summaryrefslogtreecommitdiff
path: root/src/qcam/assets/feathericons/check.svg
AgeCommit message (Expand)Author
2020-02-14qcam: assets: Provide initial icon setKieran Bingham
n83' href='#n83'>83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2023, Linaro Ltd
 *
 * Simple Software Image Processing Algorithm module
 */

#include <cmath>
#include <numeric>
#include <stdint.h>
#include <sys/mman.h>

#include <linux/v4l2-controls.h>

#include <libcamera/base/file.h>
#include <libcamera/base/log.h>
#include <libcamera/base/shared_fd.h>

#include <libcamera/control_ids.h>
#include <libcamera/controls.h>

#include <libcamera/ipa/ipa_interface.h>
#include <libcamera/ipa/ipa_module_info.h>
#include <libcamera/ipa/soft_ipa_interface.h>

#include "libcamera/internal/software_isp/debayer_params.h"
#include "libcamera/internal/software_isp/swisp_stats.h"
#include "libcamera/internal/yaml_parser.h"

#include "libipa/camera_sensor_helper.h"

#include "black_level.h"

namespace libcamera {
LOG_DEFINE_CATEGORY(IPASoft)

namespace ipa::soft {

/*
 * The number of bins to use for the optimal exposure calculations.
 */
static constexpr unsigned int kExposureBinsCount = 5;

/*
 * The exposure is optimal when the mean sample value of the histogram is
 * in the middle of the range.
 */
static constexpr float kExposureOptimal = kExposureBinsCount / 2.0;

/*
 * The below value implements the hysteresis for the exposure adjustment.
 * It is small enough to have the exposure close to the optimal, and is big
 * enough to prevent the exposure from wobbling around the optimal value.
 */
static constexpr float kExposureSatisfactory = 0.2;

class IPASoftSimple : public ipa::soft::IPASoftInterface
{
public:
	IPASoftSimple()
		: params_(nullptr), stats_(nullptr), blackLevel_(BlackLevel()),
		  ignoreUpdates_(0)
	{
	}

	~IPASoftSimple();

	int init(const IPASettings &settings,
		 const SharedFD &fdStats,
		 const SharedFD &fdParams,
		 const ControlInfoMap &sensorInfoMap) override;
	int configure(const ControlInfoMap &sensorInfoMap) override;

	int start() override;
	void stop() override;

	void processStats(const ControlList &sensorControls) override;

private:
	void updateExposure(double exposureMSV);

	DebayerParams *params_;
	SwIspStats *stats_;
	std::unique_ptr<CameraSensorHelper> camHelper_;
	ControlInfoMap sensorInfoMap_;
	BlackLevel blackLevel_;

	static constexpr unsigned int kGammaLookupSize = 1024;
	std::array<uint8_t, kGammaLookupSize> gammaTable_;
	int lastBlackLevel_ = -1;

	int32_t exposureMin_, exposureMax_;
	int32_t exposure_;
	double againMin_, againMax_, againMinStep_;
	double again_;
	unsigned int ignoreUpdates_;
};

IPASoftSimple::~IPASoftSimple()
{
	if (stats_)
		munmap(stats_, sizeof(SwIspStats));
	if (params_)
		munmap(params_, sizeof(DebayerParams));
}

int IPASoftSimple::init(const IPASettings &settings,
			const SharedFD &fdStats,
			const SharedFD &fdParams,
			const ControlInfoMap &sensorInfoMap)
{
	camHelper_ = CameraSensorHelperFactoryBase::create(settings.sensorModel);
	if (!camHelper_) {
		LOG(IPASoft, Warning)
			<< "Failed to create camera sensor helper for "
			<< settings.sensorModel;
	}

	/* Load the tuning data file */
	File file(settings.configurationFile);
	if (!file.open(File::OpenModeFlag::ReadOnly)) {
		int ret = file.error();
		LOG(IPASoft, Error)
			<< "Failed to open configuration file "
			<< settings.configurationFile << ": " << strerror(-ret);
		return ret;
	}

	std::unique_ptr<libcamera::YamlObject> data = YamlParser::parse(file);
	if (!data)
		return -EINVAL;

	/* \todo Use the IPA configuration file for real. */
	unsigned int version = (*data)["version"].get<uint32_t>(0);
	LOG(IPASoft, Debug) << "Tuning file version " << version;

	params_ = nullptr;
	stats_ = nullptr;

	if (!fdStats.isValid()) {
		LOG(IPASoft, Error) << "Invalid Statistics handle";
		return -ENODEV;
	}

	if (!fdParams.isValid()) {
		LOG(IPASoft, Error) << "Invalid Parameters handle";
		return -ENODEV;
	}

	{
		void *mem = mmap(nullptr, sizeof(DebayerParams), PROT_WRITE,
				 MAP_SHARED, fdParams.get(), 0);
		if (mem == MAP_FAILED) {
			LOG(IPASoft, Error) << "Unable to map Parameters";
			return -errno;
		}

		params_ = static_cast<DebayerParams *>(mem);
	}

	{
		void *mem = mmap(nullptr, sizeof(SwIspStats), PROT_READ,
				 MAP_SHARED, fdStats.get(), 0);
		if (mem == MAP_FAILED) {
			LOG(IPASoft, Error) << "Unable to map Statistics";
			return -errno;
		}

		stats_ = static_cast<SwIspStats *>(mem);
	}

	/*
	 * Check if the sensor driver supports the controls required by the
	 * Soft IPA.
	 * Don't save the min and max control values yet, as e.g. the limits
	 * for V4L2_CID_EXPOSURE depend on the configured sensor resolution.
	 */
	if (sensorInfoMap.find(V4L2_CID_EXPOSURE) == sensorInfoMap.end()) {
		LOG(IPASoft, Error) << "Don't have exposure control";
		return -EINVAL;
	}

	if (sensorInfoMap.find(V4L2_CID_ANALOGUE_GAIN) == sensorInfoMap.end()) {
		LOG(IPASoft, Error) << "Don't have gain control";
		return -EINVAL;
	}

	return 0;
}

int IPASoftSimple::configure(const ControlInfoMap &sensorInfoMap)
{
	sensorInfoMap_ = sensorInfoMap;

	const ControlInfo &exposureInfo = sensorInfoMap_.find(V4L2_CID_EXPOSURE)->second;
	const ControlInfo &gainInfo = sensorInfoMap_.find(V4L2_CID_ANALOGUE_GAIN)->second;

	exposureMin_ = exposureInfo.min().get<int32_t>();
	exposureMax_ = exposureInfo.max().get<int32_t>();
	if (!exposureMin_) {
		LOG(IPASoft, Warning) << "Minimum exposure is zero, that can't be linear";
		exposureMin_ = 1;
	}

	int32_t againMin = gainInfo.min().get<int32_t>();
	int32_t againMax = gainInfo.max().get<int32_t>();

	if (camHelper_) {
		againMin_ = camHelper_->gain(againMin);
		againMax_ = camHelper_->gain(againMax);
		againMinStep_ = (againMax_ - againMin_) / 100.0;
	} else {
		/*
		 * The camera sensor gain (g) is usually not equal to the value written
		 * into the gain register (x). But the way how the AGC algorithm changes
		 * the gain value to make the total exposure closer to the optimum
		 * assumes that g(x) is not too far from linear function. If the minimal
		 * gain is 0, the g(x) is likely to be far from the linear, like
		 * g(x) = a / (b * x + c). To avoid unexpected changes to the gain by
		 * the AGC algorithm (abrupt near one edge, and very small near the
		 * other) we limit the range of the gain values used.
		 */
		againMax_ = againMax;
		if (!againMin) {
			LOG(IPASoft, Warning)
				<< "Minimum gain is zero, that can't be linear";
			againMin_ = std::min(100, againMin / 2 + againMax / 2);
		}
		againMinStep_ = 1.0;
	}

	LOG(IPASoft, Info) << "Exposure " << exposureMin_ << "-" << exposureMax_
			   << ", gain " << againMin_ << "-" << againMax_
			   << " (" << againMinStep_ << ")";

	return 0;
}

int IPASoftSimple::start()
{
	return 0;
}

void IPASoftSimple::stop()
{
}

void IPASoftSimple::processStats(const ControlList &sensorControls)
{
	SwIspStats::Histogram histogram = stats_->yHistogram;
	if (ignoreUpdates_ > 0)
		blackLevel_.update(histogram);
	const uint8_t blackLevel = blackLevel_.get();

	/*
	 * Black level must be subtracted to get the correct AWB ratios, they
	 * would be off if they were computed from the whole brightness range
	 * rather than from the sensor range.
	 */
	const uint64_t nPixels = std::accumulate(
		histogram.begin(), histogram.end(), 0);
	const uint64_t offset = blackLevel * nPixels;
	const uint64_t sumR = stats_->sumR_ - offset / 4;
	const uint64_t sumG = stats_->sumG_ - offset / 2;
	const uint64_t sumB = stats_->sumB_ - offset / 4;

	/*
	 * Calculate red and blue gains for AWB.
	 * Clamp max gain at 4.0, this also avoids 0 division.
	 * Gain: 128 = 0.5, 256 = 1.0, 512 = 2.0, etc.
	 */
	const unsigned int gainR = sumR <= sumG / 4 ? 1024 : 256 * sumG / sumR;
	const unsigned int gainB = sumB <= sumG / 4 ? 1024 : 256 * sumG / sumB;
	/* Green gain and gamma values are fixed */
	constexpr unsigned int gainG = 256;

	/* Update the gamma table if needed */
	if (blackLevel != lastBlackLevel_) {
		constexpr float gamma = 0.5;
		const unsigned int blackIndex = blackLevel * kGammaLookupSize / 256;
		std::fill(gammaTable_.begin(), gammaTable_.begin() + blackIndex, 0);
		const float divisor = kGammaLookupSize - blackIndex - 1.0;
		for (unsigned int i = blackIndex; i < kGammaLookupSize; i++)
			gammaTable_[i] = UINT8_MAX *
					 std::pow((i - blackIndex) / divisor, gamma);

		lastBlackLevel_ = blackLevel;
	}

	for (unsigned int i = 0; i < DebayerParams::kRGBLookupSize; i++) {
		constexpr unsigned int div =
			DebayerParams::kRGBLookupSize * 256 / kGammaLookupSize;
		unsigned int idx;

		/* Apply gamma after gain! */
		idx = std::min({ i * gainR / div, (kGammaLookupSize - 1) });
		params_->red[i] = gammaTable_[idx];

		idx = std::min({ i * gainG / div, (kGammaLookupSize - 1) });
		params_->green[i] = gammaTable_[idx];

		idx = std::min({ i * gainB / div, (kGammaLookupSize - 1) });
		params_->blue[i] = gammaTable_[idx];
	}

	setIspParams.emit();

	/* \todo Switch to the libipa/algorithm.h API someday. */

	/*
	 * AE / AGC, use 2 frames delay to make sure that the exposure and
	 * the gain set have applied to the camera sensor.
	 * \todo This could be handled better with DelayedControls.
	 */
	if (ignoreUpdates_ > 0) {
		--ignoreUpdates_;
		return;
	}

	/*
	 * Calculate Mean Sample Value (MSV) according to formula from:
	 * https://www.araa.asn.au/acra/acra2007/papers/paper84final.pdf
	 */
	const unsigned int blackLevelHistIdx =
		blackLevel / (256 / SwIspStats::kYHistogramSize);
	const unsigned int histogramSize =
		SwIspStats::kYHistogramSize - blackLevelHistIdx;
	const unsigned int yHistValsPerBin = histogramSize / kExposureBinsCount;
	const unsigned int yHistValsPerBinMod =
		histogramSize / (histogramSize % kExposureBinsCount + 1);
	int exposureBins[kExposureBinsCount] = {};
	unsigned int denom = 0;
	unsigned int num = 0;

	for (unsigned int i = 0; i < histogramSize; i++) {
		unsigned int idx = (i - (i / yHistValsPerBinMod)) / yHistValsPerBin;
		exposureBins[idx] += stats_->yHistogram[blackLevelHistIdx + i];
	}

	for (unsigned int i = 0; i < kExposureBinsCount; i++) {
		LOG(IPASoft, Debug) << i << ": " << exposureBins[i];
		denom += exposureBins[i];
		num += exposureBins[i] * (i + 1);
	}

	float exposureMSV = static_cast<float>(num) / denom;

	/* Sanity check */
	if (!sensorControls.contains(V4L2_CID_EXPOSURE) ||
	    !sensorControls.contains(V4L2_CID_ANALOGUE_GAIN)) {
		LOG(IPASoft, Error) << "Control(s) missing";
		return;
	}

	exposure_ = sensorControls.get(V4L2_CID_EXPOSURE).get<int32_t>();
	int32_t again = sensorControls.get(V4L2_CID_ANALOGUE_GAIN).get<int32_t>();
	again_ = camHelper_ ? camHelper_->gain(again) : again;

	updateExposure(exposureMSV);

	ControlList ctrls(sensorInfoMap_);

	ctrls.set(V4L2_CID_EXPOSURE, exposure_);
	ctrls.set(V4L2_CID_ANALOGUE_GAIN,
		  static_cast<int32_t>(camHelper_ ? camHelper_->gainCode(again_) : again_));

	ignoreUpdates_ = 2;

	setSensorControls.emit(ctrls);

	LOG(IPASoft, Debug) << "exposureMSV " << exposureMSV
			    << " exp " << exposure_ << " again " << again_
			    << " gain R/B " << gainR << "/" << gainB
			    << " black level " << static_cast<unsigned int>(blackLevel);
}

void IPASoftSimple::updateExposure(double exposureMSV)
{
	/*
	 * kExpDenominator of 10 gives ~10% increment/decrement;
	 * kExpDenominator of 5 - about ~20%
	 */
	static constexpr uint8_t kExpDenominator = 10;
	static constexpr uint8_t kExpNumeratorUp = kExpDenominator + 1;
	static constexpr uint8_t kExpNumeratorDown = kExpDenominator - 1;

	double next;

	if (exposureMSV < kExposureOptimal - kExposureSatisfactory) {
		next = exposure_ * kExpNumeratorUp / kExpDenominator;
		if (next - exposure_ < 1)
			exposure_ += 1;
		else
			exposure_ = next;
		if (exposure_ >= exposureMax_) {
			next = again_ * kExpNumeratorUp / kExpDenominator;
			if (next - again_ < againMinStep_)
				again_ += againMinStep_;
			else
				again_ = next;
		}
	}

	if (exposureMSV > kExposureOptimal + kExposureSatisfactory) {
		if (exposure_ == exposureMax_ && again_ > againMin_) {
			next = again_ * kExpNumeratorDown / kExpDenominator;
			if (again_ - next < againMinStep_)
				again_ -= againMinStep_;
			else
				again_ = next;
		} else {
			next = exposure_ * kExpNumeratorDown / kExpDenominator;
			if (exposure_ - next < 1)
				exposure_ -= 1;
			else
				exposure_ = next;
		}
	}

	exposure_ = std::clamp(exposure_, exposureMin_, exposureMax_);
	again_ = std::clamp(again_, againMin_, againMax_);
}

} /* namespace ipa::soft */

/*
 * External IPA module interface
 */
extern "C" {
const struct IPAModuleInfo ipaModuleInfo = {
	IPA_MODULE_API_VERSION,
	0,
	"simple",
	"simple",
};

IPAInterface *ipaCreate()
{
	return new ipa::soft::IPASoftSimple();
}

} /* extern "C" */

} /* namespace libcamera */