summaryrefslogtreecommitdiff
path: root/utils
diff options
context:
space:
mode:
Diffstat (limited to 'utils')
-rw-r--r--utils/tuning/libtuning/ctt_ccm.py27
-rw-r--r--utils/tuning/libtuning/generators/yaml_output.py5
-rw-r--r--utils/tuning/libtuning/image.py7
-rw-r--r--utils/tuning/libtuning/libtuning.py21
-rw-r--r--utils/tuning/libtuning/macbeth.py13
-rw-r--r--utils/tuning/libtuning/modules/lsc/raspberrypi.py12
-rw-r--r--utils/tuning/libtuning/utils.py17
-rw-r--r--utils/tuning/requirements.txt1
-rwxr-xr-xutils/tuning/rkisp1.py5
9 files changed, 62 insertions, 46 deletions
diff --git a/utils/tuning/libtuning/ctt_ccm.py b/utils/tuning/libtuning/ctt_ccm.py
index f37adaf4..c4362756 100644
--- a/utils/tuning/libtuning/ctt_ccm.py
+++ b/utils/tuning/libtuning/ctt_ccm.py
@@ -4,6 +4,8 @@
#
# camera tuning tool for CCM (colour correction matrix)
+import logging
+
import numpy as np
from scipy.optimize import minimize
@@ -12,6 +14,8 @@ from .image import Image
from .ctt_awb import get_alsc_patches
from .utils import visualise_macbeth_chart
+logger = logging.getLogger(__name__)
+
"""
takes 8-bit macbeth chart values, degammas and returns 16 bit
"""
@@ -129,7 +133,7 @@ def ccm(Cam, cal_cr_list, cal_cb_list):
"""
ccm_tab = {}
for Img in imgs:
- Cam.log += '\nProcessing image: ' + Img.name
+ logger.info('Processing image: ' + Img.name)
"""
get macbeth patches with alsc applied if alsc enabled.
Note: if alsc is disabled then colour_cals will be set to None and no
@@ -154,7 +158,7 @@ def ccm(Cam, cal_cr_list, cal_cb_list):
each channel for each patch
"""
gain = np.mean(m_srgb) / np.mean((r, g, b))
- Cam.log += '\nGain with respect to standard colours: {:.3f}'.format(gain)
+ logger.info(f'Gain with respect to standard colours: {gain:.3f}')
r = np.mean(gain * r, axis=1)
b = np.mean(gain * b, axis=1)
g = np.mean(gain * g, axis=1)
@@ -192,15 +196,13 @@ def ccm(Cam, cal_cr_list, cal_cb_list):
zero since the input data is imperfect
'''
- Cam.log += ("\n \n Optimised Matrix Below: \n \n")
[r1, r2, g1, g2, b1, b2] = result.x
# The new, optimised color correction matrix values
+ # This is the optimised Color Matrix (preserving greys by summing rows up to 1)
optimised_ccm = [r1, r2, (1 - r1 - r2), g1, g2, (1 - g1 - g2), b1, b2, (1 - b1 - b2)]
- # This is the optimised Color Matrix (preserving greys by summing rows up to 1)
- Cam.log += str(optimised_ccm)
- Cam.log += "\n Old Color Correction Matrix Below \n"
- Cam.log += str(ccm)
+ logger.info(f'Optimized Matrix: {np.round(optimised_ccm, 4)}')
+ logger.info(f'Old Matrix: {np.round(ccm, 4)}')
formatted_ccm = np.array(original_ccm).reshape((3, 3))
@@ -229,7 +231,7 @@ def ccm(Cam, cal_cr_list, cal_cb_list):
We now want to spit out some data that shows
how the optimisation has improved the color matrices
'''
- Cam.log += "Here are the Improvements"
+ logger.info("Here are the Improvements")
# CALCULATE WORST CASE delta e
old_worst_delta_e = 0
@@ -244,8 +246,8 @@ def ccm(Cam, cal_cr_list, cal_cb_list):
if new_delta_e > new_worst_delta_e:
new_worst_delta_e = new_delta_e
- Cam.log += "Before color correction matrix was optimised, we got an average delta E of " + str(before_average) + " and a maximum delta E of " + str(old_worst_delta_e)
- Cam.log += "After color correction matrix was optimised, we got an average delta E of " + str(after_average) + " and a maximum delta E of " + str(new_worst_delta_e)
+ logger.info(f'delta E optimized: average: {after_average:.2f} max:{new_worst_delta_e:.2f}')
+ logger.info(f'delta E old: average: {before_average:.2f} max:{old_worst_delta_e:.2f}')
visualise_macbeth_chart(m_rgb, optimised_ccm_rgb, after_gamma_rgb, str(Img.col) + str(matrix_selection_types[typenum]))
'''
@@ -262,9 +264,8 @@ def ccm(Cam, cal_cr_list, cal_cb_list):
ccm_tab[Img.col].append(optimised_ccm)
else:
ccm_tab[Img.col] = [optimised_ccm]
- Cam.log += '\n'
- Cam.log += '\nFinished processing images'
+ logger.info('Finished processing images')
"""
average any ccms that share a colour temperature
"""
@@ -273,7 +274,7 @@ def ccm(Cam, cal_cr_list, cal_cb_list):
tab = np.where((10000 * tab) % 1 <= 0.05, tab + 0.00001, tab)
tab = np.where((10000 * tab) % 1 >= 0.95, tab - 0.00001, tab)
ccm_tab[k] = list(np.round(tab, 5))
- Cam.log += '\nMatrix calculated for colour temperature of {} K'.format(k)
+ logger.info(f'Matrix calculated for colour temperature of {k} K')
"""
return all ccms with respective colour temperature in the correct format,
diff --git a/utils/tuning/libtuning/generators/yaml_output.py b/utils/tuning/libtuning/generators/yaml_output.py
index 8f22d386..31e265df 100644
--- a/utils/tuning/libtuning/generators/yaml_output.py
+++ b/utils/tuning/libtuning/generators/yaml_output.py
@@ -9,8 +9,9 @@ from .generator import Generator
from numbers import Number
from pathlib import Path
-import libtuning.utils as utils
+import logging
+logger = logging.getLogger(__name__)
class YamlOutput(Generator):
def __init__(self):
@@ -112,7 +113,7 @@ class YamlOutput(Generator):
continue
if not isinstance(output_dict[module], dict):
- utils.eprint(f'Error: Output of {module.type} is not a dictionary')
+ logger.error(f'Error: Output of {module.type} is not a dictionary')
continue
lines = self._stringify_dict(output_dict[module])
diff --git a/utils/tuning/libtuning/image.py b/utils/tuning/libtuning/image.py
index 6ff60ec1..2c4d774f 100644
--- a/utils/tuning/libtuning/image.py
+++ b/utils/tuning/libtuning/image.py
@@ -13,6 +13,9 @@ import re
import libtuning as lt
import libtuning.utils as utils
+import logging
+
+logger = logging.getLogger(__name__)
class Image:
@@ -25,13 +28,13 @@ class Image:
try:
self._load_metadata_exif()
except Exception as e:
- utils.eprint(f'Failed to load metadata from {self.path}: {e}')
+ logger.error(f'Failed to load metadata from {self.path}: {e}')
raise e
try:
self._read_image_dng()
except Exception as e:
- utils.eprint(f'Failed to load image data from {self.path}: {e}')
+ logger.error(f'Failed to load image data from {self.path}: {e}')
raise e
@property
diff --git a/utils/tuning/libtuning/libtuning.py b/utils/tuning/libtuning/libtuning.py
index 5e22288d..5342e5d6 100644
--- a/utils/tuning/libtuning/libtuning.py
+++ b/utils/tuning/libtuning/libtuning.py
@@ -5,13 +5,14 @@
# An infrastructure for camera tuning tools
import argparse
+import logging
import libtuning as lt
import libtuning.utils as utils
-from libtuning.utils import eprint
from enum import Enum, IntEnum
+logger = logging.getLogger(__name__)
class Color(IntEnum):
R = 0
@@ -112,10 +113,10 @@ class Tuner(object):
for module_type in output_order:
modules = [module for module in self.modules if module.type == module_type.type]
if len(modules) > 1:
- eprint(f'Multiple modules found for module type "{module_type.type}"')
+ logger.error(f'Multiple modules found for module type "{module_type.type}"')
return False
if len(modules) < 1:
- eprint(f'No module found for module type "{module_type.type}"')
+ logger.error(f'No module found for module type "{module_type.type}"')
return False
self.output_order.append(modules[0])
@@ -124,19 +125,19 @@ class Tuner(object):
# \todo Validate parser and generator at Tuner construction time?
def _validate_settings(self):
if self.parser is None:
- eprint('Missing parser')
+ logger.error('Missing parser')
return False
if self.generator is None:
- eprint('Missing generator')
+ logger.error('Missing generator')
return False
if len(self.modules) == 0:
- eprint('No modules added')
+ logger.error('No modules added')
return False
if len(self.output_order) != len(self.modules):
- eprint('Number of outputs does not match number of modules')
+ logger.error('Number of outputs does not match number of modules')
return False
return True
@@ -183,7 +184,7 @@ class Tuner(object):
for module in self.modules:
if not module.validate_config(self.config):
- eprint(f'Config is invalid for module {module.type}')
+ logger.error(f'Config is invalid for module {module.type}')
return -1
has_lsc = any(isinstance(m, lt.modules.lsc.LSC) for m in self.modules)
@@ -192,14 +193,14 @@ class Tuner(object):
images = utils.load_images(args.input, self.config, not has_only_lsc, has_lsc)
if images is None or len(images) == 0:
- eprint(f'No images were found, or able to load')
+ logger.error(f'No images were found, or able to load')
return -1
# Do the tuning
for module in self.modules:
out = module.process(self.config, images, self.output)
if out is None:
- eprint(f'Module {module.name} failed to process, aborting')
+ logger.error(f'Module {module.hr_name} failed to process...')
break
self.output[module] = out
diff --git a/utils/tuning/libtuning/macbeth.py b/utils/tuning/libtuning/macbeth.py
index 265a33d6..28051de8 100644
--- a/utils/tuning/libtuning/macbeth.py
+++ b/utils/tuning/libtuning/macbeth.py
@@ -13,12 +13,15 @@ import os
from pathlib import Path
import numpy as np
import warnings
+import logging
from sklearn import cluster as cluster
from .ctt_ransac import get_square_verts, get_square_centres
from libtuning.image import Image
+logger = logging.getLogger(__name__)
+
# Reshape image to fixed width without distorting returns image and scale
# factor
@@ -374,7 +377,7 @@ def get_macbeth_chart(img, ref_data):
# Catch macbeth errors and continue with code
except MacbethError as error:
- eprint(error)
+ logger.warning(error)
return (0, None, None, False)
@@ -497,7 +500,7 @@ def find_macbeth(img, mac_config):
coords_fit = coords
if cor < 0.75:
- eprint(f'Warning: Low confidence {cor:.3f} for macbeth chart in {img.path.name}')
+ logger.warning(f'Low confidence {cor:.3f} for macbeth chart')
if show:
draw_macbeth_results(img, coords_fit)
@@ -510,18 +513,18 @@ def locate_macbeth(image: Image, config: dict):
av_chan = (np.mean(np.array(image.channels), axis=0) / (2**16))
av_val = np.mean(av_chan)
if av_val < image.blacklevel_16 / (2**16) + 1 / 64:
- eprint(f'Image {image.path.name} too dark')
+ logger.warning(f'Image {image.path.name} too dark')
return None
macbeth = find_macbeth(av_chan, config['general']['macbeth'])
if macbeth is None:
- eprint(f'No macbeth chart found in {image.path.name}')
+ logger.warning(f'No macbeth chart found in {image.path.name}')
return None
mac_cen_coords = macbeth[1]
if not image.get_patches(mac_cen_coords):
- eprint(f'Macbeth patches have saturated in {image.path.name}')
+ logger.warning(f'Macbeth patches have saturated in {image.path.name}')
return None
return macbeth
diff --git a/utils/tuning/libtuning/modules/lsc/raspberrypi.py b/utils/tuning/libtuning/modules/lsc/raspberrypi.py
index f19c7163..99bc4fe6 100644
--- a/utils/tuning/libtuning/modules/lsc/raspberrypi.py
+++ b/utils/tuning/libtuning/modules/lsc/raspberrypi.py
@@ -12,7 +12,9 @@ import libtuning.utils as utils
from numbers import Number
import numpy as np
+import logging
+logger = logging.getLogger(__name__)
class ALSCRaspberryPi(LSC):
# Override the type name so that the parser can match the entry in the
@@ -35,7 +37,7 @@ class ALSCRaspberryPi(LSC):
def validate_config(self, config: dict) -> bool:
if self not in config:
- utils.eprint(f'{self.type} not in config')
+ logger.error(f'{self.type} not in config')
return False
valid = True
@@ -46,14 +48,14 @@ class ALSCRaspberryPi(LSC):
color_key = self.do_color.name
if lum_key not in conf and self.luminance_strength.required:
- utils.eprint(f'{lum_key} is not in config')
+ logger.error(f'{lum_key} is not in config')
valid = False
if lum_key in conf and (conf[lum_key] < 0 or conf[lum_key] > 1):
- utils.eprint(f'Warning: {lum_key} is not in range [0, 1]; defaulting to 0.5')
+ logger.warning(f'{lum_key} is not in range [0, 1]; defaulting to 0.5')
if color_key not in conf and self.do_color.required:
- utils.eprint(f'{color_key} is not in config')
+ logger.error(f'{color_key} is not in config')
valid = False
return valid
@@ -235,7 +237,7 @@ class ALSCRaspberryPi(LSC):
if count == 1:
output['sigma'] = 0.005
output['sigma_Cb'] = 0.005
- utils.eprint('Warning: Only one alsc calibration found; standard sigmas used for adaptive algorithm.')
+ logger.warning('Only one alsc calibration found; standard sigmas used for adaptive algorithm.')
return output
# Obtain worst-case scenario residual sigmas
diff --git a/utils/tuning/libtuning/utils.py b/utils/tuning/libtuning/utils.py
index f099c0ed..87234140 100644
--- a/utils/tuning/libtuning/utils.py
+++ b/utils/tuning/libtuning/utils.py
@@ -12,16 +12,15 @@ import os
from pathlib import Path
import re
import sys
+import logging
import libtuning as lt
from libtuning.image import Image
from libtuning.macbeth import locate_macbeth
-# Utility functions
-
+logger = logging.getLogger(__name__)
-def eprint(*args, **kwargs):
- print(*args, file=sys.stderr, **kwargs)
+# Utility functions
def get_module_by_type_name(modules, name):
@@ -45,7 +44,7 @@ def _list_image_files(directory):
def _parse_image_filename(fn: Path):
result = re.search(r'^(alsc_)?(\d+)[kK]_(\d+)?[lLuU]?.\w{3,4}$', fn.name)
if result is None:
- eprint(f'The file name of {fn.name} is incorrectly formatted')
+ logger.error(f'The file name of {fn.name} is incorrectly formatted')
return None, None, None
color = int(result.group(2))
@@ -72,7 +71,7 @@ def _validate_images(images):
def load_images(input_dir: str, config: dict, load_nonlsc: bool, load_lsc: bool) -> list:
files = _list_image_files(input_dir)
if len(files) == 0:
- eprint(f'No images found in {input_dir}')
+ logger.error(f'No images found in {input_dir}')
return None
images = []
@@ -83,19 +82,19 @@ def load_images(input_dir: str, config: dict, load_nonlsc: bool, load_lsc: bool)
# Skip lsc image if we don't need it
if lsc_only and not load_lsc:
- eprint(f'Skipping {f.name} as this tuner has no LSC module')
+ logger.warning(f'Skipping {f.name} as this tuner has no LSC module')
continue
# Skip non-lsc image if we don't need it
if not lsc_only and not load_nonlsc:
- eprint(f'Skipping {f.name} as this tuner only has an LSC module')
+ logger.warning(f'Skipping {f.name} as this tuner only has an LSC module')
continue
# Load image
try:
image = Image(f)
except Exception as e:
- eprint(f'Failed to load image {f.name}: {e}')
+ logger.error(f'Failed to load image {f.name}: {e}')
continue
# Populate simple fields
diff --git a/utils/tuning/requirements.txt b/utils/tuning/requirements.txt
index b2875524..3705769b 100644
--- a/utils/tuning/requirements.txt
+++ b/utils/tuning/requirements.txt
@@ -1,3 +1,4 @@
+coloredlogs
matplotlib
numpy
opencv-python
diff --git a/utils/tuning/rkisp1.py b/utils/tuning/rkisp1.py
index d0ce15d5..2606e07a 100755
--- a/utils/tuning/rkisp1.py
+++ b/utils/tuning/rkisp1.py
@@ -5,6 +5,8 @@
#
# Tuning script for rkisp1
+import coloredlogs
+import logging
import sys
import libtuning as lt
@@ -13,6 +15,9 @@ from libtuning.generators import YamlOutput
from libtuning.modules.lsc import LSCRkISP1
from libtuning.modules.agc import AGCRkISP1
+
+coloredlogs.install(level=logging.INFO, fmt='%(name)s %(levelname)s %(message)s')
+
tuner = lt.Tuner('RkISP1')
tuner.add(LSCRkISP1(
debug=[lt.Debug.Plot],