diff options
Diffstat (limited to 'utils')
-rw-r--r-- | utils/tuning/README.rst | 11 | ||||
-rw-r--r-- | utils/tuning/libtuning/__init__.py | 13 | ||||
-rw-r--r-- | utils/tuning/libtuning/image.py | 136 | ||||
-rw-r--r-- | utils/tuning/libtuning/libtuning.py | 208 | ||||
-rw-r--r-- | utils/tuning/libtuning/macbeth.py | 516 | ||||
-rw-r--r-- | utils/tuning/libtuning/macbeth_ref.pgm | 6 | ||||
-rw-r--r-- | utils/tuning/libtuning/utils.py | 125 |
7 files changed, 1015 insertions, 0 deletions
diff --git a/utils/tuning/README.rst b/utils/tuning/README.rst new file mode 100644 index 00000000..ce533b2c --- /dev/null +++ b/utils/tuning/README.rst @@ -0,0 +1,11 @@ +.. SPDX-License-Identifier: CC-BY-SA-4.0 + +.. TODO: Write an overview of libtuning + +Dependencies +------------ + +- cv2 +- numpy +- pyexiv2 +- rawpy diff --git a/utils/tuning/libtuning/__init__.py b/utils/tuning/libtuning/__init__.py new file mode 100644 index 00000000..93049976 --- /dev/null +++ b/utils/tuning/libtuning/__init__.py @@ -0,0 +1,13 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> + +from libtuning.utils import * +from libtuning.libtuning import * + +from libtuning.image import * +from libtuning.macbeth import * + +from libtuning.average import * +from libtuning.gradient import * +from libtuning.smoothing import * diff --git a/utils/tuning/libtuning/image.py b/utils/tuning/libtuning/image.py new file mode 100644 index 00000000..aa9d20b5 --- /dev/null +++ b/utils/tuning/libtuning/image.py @@ -0,0 +1,136 @@ +# SPDX-License-Identifier: BSD-2-Clause +# +# Copyright (C) 2019, Raspberry Pi Ltd +# +# image.py - Container for an image and associated metadata + +import binascii +import numpy as np +from pathlib import Path +import pyexiv2 as pyexif +import rawpy as raw +import re + +import libtuning as lt +import libtuning.utils as utils + + +class Image: + def __init__(self, path: Path): + self.path = path + self.lsc_only = False + self.color = -1 + self.lux = -1 + + try: + self._load_metadata_exif() + except Exception as e: + utils.eprint(f'Failed to load metadata from {self.path}: {e}') + raise e + + try: + self._read_image_dng() + except Exception as e: + utils.eprint(f'Failed to load image data from {self.path}: {e}') + raise e + + @property + def name(self): + return self.path.name + + # May raise KeyError as there are too many to check + def _load_metadata_exif(self): + # RawPy doesn't load all the image tags that we need, so we use py3exiv2 + metadata = pyexif.ImageMetadata(str(self.path)) + metadata.read() + + # The DNG and TIFF/EP specifications use different IFDs to store the + # raw image data and the Exif tags. DNG stores them in a SubIFD and in + # an Exif IFD respectively (named "SubImage1" and "Photo" by pyexiv2), + # while TIFF/EP stores them both in IFD0 (name "Image"). Both are used + # in "DNG" files, with libcamera-apps following the DNG recommendation + # and applications based on picamera2 following TIFF/EP. + # + # This code detects which tags are being used, and therefore extracts the + # correct values. + try: + self.w = metadata['Exif.SubImage1.ImageWidth'].value + subimage = 'SubImage1' + photo = 'Photo' + except KeyError: + self.w = metadata['Exif.Image.ImageWidth'].value + subimage = 'Image' + photo = 'Image' + self.pad = 0 + self.h = metadata[f'Exif.{subimage}.ImageLength'].value + white = metadata[f'Exif.{subimage}.WhiteLevel'].value + self.sigbits = int(white).bit_length() + self.fmt = (self.sigbits - 4) // 2 + self.exposure = int(metadata[f'Exif.{photo}.ExposureTime'].value * 1000000) + self.againQ8 = metadata[f'Exif.{photo}.ISOSpeedRatings'].value * 256 / 100 + self.againQ8_norm = self.againQ8 / 256 + self.camName = metadata['Exif.Image.Model'].value + self.blacklevel = int(metadata[f'Exif.{subimage}.BlackLevel'].value[0]) + self.blacklevel_16 = self.blacklevel << (16 - self.sigbits) + + # Channel order depending on bayer pattern + # The key is the order given by exif, where 0 is R, 1 is G, and 2 is B + # The value is the index where the color can be found, where the first + # is R, then G, then G, then B. + bayer_case = { + '0 1 1 2': (lt.Color.R, lt.Color.GR, lt.Color.GB, lt.Color.B), + '1 2 0 1': (lt.Color.GB, lt.Color.R, lt.Color.B, lt.Color.GR), + '2 1 1 0': (lt.Color.B, lt.Color.GB, lt.Color.GR, lt.Color.R), + '1 0 2 1': (lt.Color.GR, lt.Color.R, lt.Color.B, lt.Color.GB) + } + # Note: This needs to be in IFD0 + cfa_pattern = metadata[f'Exif.{subimage}.CFAPattern'].value + self.order = bayer_case[cfa_pattern] + + def _read_image_dng(self): + raw_im = raw.imread(str(self.path)) + raw_data = raw_im.raw_image + shift = 16 - self.sigbits + c0 = np.left_shift(raw_data[0::2, 0::2].astype(np.int64), shift) + c1 = np.left_shift(raw_data[0::2, 1::2].astype(np.int64), shift) + c2 = np.left_shift(raw_data[1::2, 0::2].astype(np.int64), shift) + c3 = np.left_shift(raw_data[1::2, 1::2].astype(np.int64), shift) + self.channels = [c0, c1, c2, c3] + # Reorder the channels into R, GR, GB, B + self.channels = [self.channels[i] for i in self.order] + + # \todo Move this to macbeth.py + def get_patches(self, cen_coords, size=16): + saturated = False + + # Obtain channel widths and heights + ch_w, ch_h = self.w, self.h + cen_coords = list(np.array((cen_coords[0])).astype(np.int32)) + self.cen_coords = cen_coords + + # Squares are ordered by stacking macbeth chart columns from left to + # right. Some useful patch indices: + # white = 3 + # black = 23 + # 'reds' = 9, 10 + # 'blues' = 2, 5, 8, 20, 22 + # 'greens' = 6, 12, 17 + # greyscale = 3, 7, 11, 15, 19, 23 + all_patches = [] + for ch in self.channels: + ch_patches = [] + for cen in cen_coords: + # Macbeth centre is placed at top left of central 2x2 patch to + # account for rounding. Patch pixels are sorted by pixel + # brightness so spatial information is lost. + patch = ch[cen[1] - 7:cen[1] + 9, cen[0] - 7:cen[0] + 9].flatten() + patch.sort() + if patch[-5] == (2**self.sigbits - 1) * 2**(16 - self.sigbits): + saturated = True + ch_patches.append(patch) + + all_patches.append(ch_patches) + + self.patches = all_patches + + return not saturated diff --git a/utils/tuning/libtuning/libtuning.py b/utils/tuning/libtuning/libtuning.py new file mode 100644 index 00000000..d84c148f --- /dev/null +++ b/utils/tuning/libtuning/libtuning.py @@ -0,0 +1,208 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> +# +# libtuning.py - An infrastructure for camera tuning tools + +import argparse + +import libtuning as lt +import libtuning.utils as utils +from libtuning.utils import eprint + +from enum import Enum, IntEnum + + +class Color(IntEnum): + R = 0 + GR = 1 + GB = 2 + B = 3 + + +class Debug(Enum): + Plot = 1 + + +# @brief What to do with the leftover pixels after dividing them into ALSC +# sectors, when the division gradient is uniform +# @var Float Force floating point division so all sectors divide equally +# @var DistributeFront Divide the remainder equally (until running out, +# obviously) into the existing sectors, starting from the front +# @var DistributeBack Same as DistributeFront but starting from the back +class Remainder(Enum): + Float = 0 + DistributeFront = 1 + DistributeBack = 2 + + +# @brief A helper class to contain a default value for a module configuration +# parameter +class Param(object): + # @var Required The value contained in this instance is irrelevant, and the + # value must be provided by the tuning configuration file. + # @var Optional If the value is not provided by the tuning configuration + # file, then the value contained in this instance will be used instead. + # @var Hardcode The value contained in this instance will be used + class Mode(Enum): + Required = 0 + Optional = 1 + Hardcode = 2 + + # @param name Name of the parameter. Shall match the name used in the + # configuration file for the parameter + # @param required Whether or not a value is required in the config + # parameter of get_value() + # @param val Default value (only relevant if mode is Optional) + def __init__(self, name: str, required: Mode, val=None): + self.name = name + self.__required = required + self.val = val + + def get_value(self, config: dict): + if self.__required is self.Mode.Hardcode: + return self.val + + if self.__required is self.Mode.Required and self.name not in config: + raise ValueError(f'Parameter {self.name} is required but not provided in the configuration') + + return config[self.name] if self.required else self.val + + @property + def required(self): + return self.__required is self.Mode.Required + + # @brief Used by libtuning to auto-generate help information for the tuning + # script on the available parameters for the configuration file + # \todo Implement this + @property + def info(self): + raise NotImplementedError + + +class Tuner(object): + + # External functions + + def __init__(self, platform_name): + self.name = platform_name + self.modules = [] + self.parser = None + self.generator = None + self.output_order = [] + self.config = {} + self.output = {} + + def add(self, module): + self.modules.append(module) + + def set_input_parser(self, parser): + self.parser = parser + + def set_output_formatter(self, output): + self.generator = output + + def set_output_order(self, modules): + self.output_order = modules + + # @brief Convert classes in self.output_order to the instances in self.modules + def _prepare_output_order(self): + output_order = self.output_order + self.output_order = [] + for module_type in output_order: + modules = [module for module in self.modules if module.type == module_type.type] + if len(modules) > 1: + eprint(f'Multiple modules found for module type "{module_type.type}"') + return False + if len(modules) < 1: + eprint(f'No module found for module type "{module_type.type}"') + return False + self.output_order.append(modules[0]) + + return True + + # \todo Validate parser and generator at Tuner construction time? + def _validate_settings(self): + if self.parser is None: + eprint('Missing parser') + return False + + if self.generator is None: + eprint('Missing generator') + return False + + if len(self.modules) == 0: + eprint('No modules added') + return False + + if len(self.output_order) != len(self.modules): + eprint('Number of outputs does not match number of modules') + return False + + return True + + def _process_args(self, argv, platform_name): + parser = argparse.ArgumentParser(description=f'Camera Tuning for {platform_name}') + parser.add_argument('-i', '--input', type=str, required=True, + help='''Directory containing calibration images (required). + Images for ALSC must be named "alsc_{Color Temperature}k_1[u].dng", + and all other images must be named "{Color Temperature}k_{Lux Level}l.dng"''') + parser.add_argument('-o', '--output', type=str, required=True, + help='Output file (required)') + # It is not our duty to scan all modules to figure out their default + # options, so simply return an empty configuration if none is provided. + parser.add_argument('-c', '--config', type=str, default='', + help='Config file (optional)') + # \todo Check if we really need this or if stderr is good enough, or if + # we want a better logging infrastructure with log levels + parser.add_argument('-l', '--log', type=str, default=None, + help='Output log file (optional)') + return parser.parse_args(argv[1:]) + + def run(self, argv): + args = self._process_args(argv, self.name) + if args is None: + return -1 + + if not self._validate_settings(): + return -1 + + if not self._prepare_output_order(): + return -1 + + if len(args.config) > 0: + self.config, disable = self.parser.parse(args.config, self.modules) + else: + self.config = {'general': {}} + disable = [] + + # Remove disabled modules + for module in disable: + if module in self.modules: + self.modules.remove(module) + + for module in self.modules: + if not module.validate_config(self.config): + eprint(f'Config is invalid for module {module.type}') + return -1 + + has_lsc = any(isinstance(m, lt.modules.lsc.LSC) for m in self.modules) + # Only one LSC module allowed + has_only_lsc = has_lsc and len(self.modules) == 1 + + images = utils.load_images(args.input, self.config, not has_only_lsc, has_lsc) + if images is None or len(images) == 0: + eprint(f'No images were found, or able to load') + return -1 + + # Do the tuning + for module in self.modules: + out = module.process(self.config, images, self.output) + if out is None: + eprint(f'Module {module.name} failed to process, aborting') + break + self.output[module] = out + + self.generator.write(args.output, self.output, self.output_order) + + return 0 diff --git a/utils/tuning/libtuning/macbeth.py b/utils/tuning/libtuning/macbeth.py new file mode 100644 index 00000000..5faddf66 --- /dev/null +++ b/utils/tuning/libtuning/macbeth.py @@ -0,0 +1,516 @@ +# SPDX-License-Identifier: BSD-2-Clause +# +# Copyright (C) 2019, Raspberry Pi Ltd +# +# macbeth.py - Locate and extract Macbeth charts from images +# (Copied from: ctt_macbeth_locator.py) + +# \todo Add debugging + +import cv2 +import os +from pathlib import Path +import numpy as np + +from libtuning.image import Image + + +# Reshape image to fixed width without distorting returns image and scale +# factor +def reshape(img, width): + factor = width / img.shape[0] + return cv2.resize(img, None, fx=factor, fy=factor), factor + + +# Correlation function to quantify match +def correlate(im1, im2): + f1 = im1.flatten() + f2 = im2.flatten() + cor = np.corrcoef(f1, f2) + return cor[0][1] + + +# @brief Compute coordinates of macbeth chart vertices and square centres +# @return (max_cor, best_map_col_norm, fit_coords, success) +# +# Also returns an error/success message for debugging purposes. Additionally, +# it scores the match with a confidence value. +# +# Brief explanation of the macbeth chart locating algorithm: +# - Find rectangles within image +# - Take rectangles within percentage offset of median perimeter. The +# assumption is that these will be the macbeth squares +# - For each potential square, find the 24 possible macbeth centre locations +# that would produce a square in that location +# - Find clusters of potential macbeth chart centres to find the potential +# macbeth centres with the most votes, i.e. the most likely ones +# - For each potential macbeth centre, use the centres of the squares that +# voted for it to find macbeth chart corners +# - For each set of corners, transform the possible match into normalised +# space and correlate with a reference chart to evaluate the match +# - Select the highest correlation as the macbeth chart match, returning the +# correlation as the confidence score +# +# \todo Clean this up +def get_macbeth_chart(img, ref_data): + ref, ref_w, ref_h, ref_corns = ref_data + + # The code will raise and catch a MacbethError in case of a problem, trying + # to give some likely reasons why the problem occured, hence the try/except + try: + # Obtain image, convert to grayscale and normalise + src = img + src, factor = reshape(src, 200) + original = src.copy() + a = 125 / np.average(src) + src_norm = cv2.convertScaleAbs(src, alpha=a, beta=0) + + # This code checks if there are seperate colour channels. In the past the + # macbeth locator ran on jpgs and this makes it robust to different + # filetypes. Note that running it on a jpg has 4x the pixels of the + # average bayer channel so coordinates must be doubled. + + # This is best done in img_load.py in the get_patches method. The + # coordinates and image width, height must be divided by two if the + # macbeth locator has been run on a demosaicked image. + if len(src_norm.shape) == 3: + src_bw = cv2.cvtColor(src_norm, cv2.COLOR_BGR2GRAY) + else: + src_bw = src_norm + original_bw = src_bw.copy() + + # Obtain image edges + sigma = 2 + src_bw = cv2.GaussianBlur(src_bw, (0, 0), sigma) + t1, t2 = 50, 100 + edges = cv2.Canny(src_bw, t1, t2) + + # Dilate edges to prevent self-intersections in contours + k_size = 2 + kernel = np.ones((k_size, k_size)) + its = 1 + edges = cv2.dilate(edges, kernel, iterations=its) + + # Find contours in image + conts, _ = cv2.findContours(edges, cv2.RETR_TREE, + cv2.CHAIN_APPROX_NONE) + if len(conts) == 0: + raise MacbethError( + '\nWARNING: No macbeth chart found!' + '\nNo contours found in image\n' + 'Possible problems:\n' + '- Macbeth chart is too dark or bright\n' + '- Macbeth chart is occluded\n' + ) + + # Find quadrilateral contours + epsilon = 0.07 + conts_per = [] + for i in range(len(conts)): + per = cv2.arcLength(conts[i], True) + poly = cv2.approxPolyDP(conts[i], epsilon * per, True) + if len(poly) == 4 and cv2.isContourConvex(poly): + conts_per.append((poly, per)) + + if len(conts_per) == 0: + raise MacbethError( + '\nWARNING: No macbeth chart found!' + '\nNo quadrilateral contours found' + '\nPossible problems:\n' + '- Macbeth chart is too dark or bright\n' + '- Macbeth chart is occluded\n' + '- Macbeth chart is out of camera plane\n' + ) + + # Sort contours by perimeter and get perimeters within percent of median + conts_per = sorted(conts_per, key=lambda x: x[1]) + med_per = conts_per[int(len(conts_per) / 2)][1] + side = med_per / 4 + perc = 0.1 + med_low, med_high = med_per * (1 - perc), med_per * (1 + perc) + squares = [] + for i in conts_per: + if med_low <= i[1] and med_high >= i[1]: + squares.append(i[0]) + + # Obtain coordinates of nomralised macbeth and squares + square_verts, mac_norm = get_square_verts(0.06) + # For each square guess, find 24 possible macbeth chart centres + mac_mids = [] + squares_raw = [] + for i in range(len(squares)): + square = squares[i] + squares_raw.append(square) + + # Convert quads to rotated rectangles. This is required as the + # 'squares' are usually quite irregular quadrilaterls, so + # performing a transform would result in exaggerated warping and + # inaccurate macbeth chart centre placement + rect = cv2.minAreaRect(square) + square = cv2.boxPoints(rect).astype(np.float32) + + # Reorder vertices to prevent 'hourglass shape' + square = sorted(square, key=lambda x: x[0]) + square_1 = sorted(square[:2], key=lambda x: x[1]) + square_2 = sorted(square[2:], key=lambda x: -x[1]) + square = np.array(np.concatenate((square_1, square_2)), np.float32) + square = np.reshape(square, (4, 2)).astype(np.float32) + squares[i] = square + + # Find 24 possible macbeth chart centres by trasnforming normalised + # macbeth square vertices onto candidate square vertices found in image + for j in range(len(square_verts)): + verts = square_verts[j] + p_mat = cv2.getPerspectiveTransform(verts, square) + mac_guess = cv2.perspectiveTransform(mac_norm, p_mat) + mac_guess = np.round(mac_guess).astype(np.int32) + + mac_mid = np.mean(mac_guess, axis=1) + mac_mids.append([mac_mid, (i, j)]) + + if len(mac_mids) == 0: + raise MacbethError( + '\nWARNING: No macbeth chart found!' + '\nNo possible macbeth charts found within image' + '\nPossible problems:\n' + '- Part of the macbeth chart is outside the image\n' + '- Quadrilaterals in image background\n' + ) + + # Reshape data + for i in range(len(mac_mids)): + mac_mids[i][0] = mac_mids[i][0][0] + + # Find where midpoints cluster to identify most likely macbeth centres + clustering = cluster.AgglomerativeClustering( + n_clusters=None, + compute_full_tree=True, + distance_threshold=side * 2 + ) + mac_mids_list = [x[0] for x in mac_mids] + + if len(mac_mids_list) == 1: + # Special case of only one valid centre found (probably not needed) + clus_list = [] + clus_list.append([mac_mids, len(mac_mids)]) + + else: + clustering.fit(mac_mids_list) + + # Create list of all clusters + clus_list = [] + if clustering.n_clusters_ > 1: + for i in range(clustering.labels_.max() + 1): + indices = [j for j, x in enumerate(clustering.labels_) if x == i] + clus = [] + for index in indices: + clus.append(mac_mids[index]) + clus_list.append([clus, len(clus)]) + clus_list.sort(key=lambda x: -x[1]) + + elif clustering.n_clusters_ == 1: + # Special case of only one cluster found + clus_list.append([mac_mids, len(mac_mids)]) + else: + raise MacbethError( + '\nWARNING: No macebth chart found!' + '\nNo clusters found' + '\nPossible problems:\n' + '- NA\n' + ) + + # Keep only clusters with enough votes + clus_len_max = clus_list[0][1] + clus_tol = 0.7 + for i in range(len(clus_list)): + if clus_list[i][1] < clus_len_max * clus_tol: + clus_list = clus_list[:i] + break + cent = np.mean(clus_list[i][0], axis=0)[0] + clus_list[i].append(cent) + + # Get centres of each normalised square + reference = get_square_centres(0.06) + + # For each possible macbeth chart, transform image into + # normalised space and find correlation with reference + max_cor = 0 + best_map = None + best_fit = None + best_cen_fit = None + best_ref_mat = None + + for clus in clus_list: + clus = clus[0] + sq_cents = [] + ref_cents = [] + i_list = [p[1][0] for p in clus] + for point in clus: + i, j = point[1] + + # Remove any square that voted for two different points within + # the same cluster. This causes the same point in the image to be + # mapped to two different reference square centres, resulting in + # a very distorted perspective transform since cv2.findHomography + # simply minimises error. + # This phenomenon is not particularly likely to occur due to the + # enforced distance threshold in the clustering fit but it is + # best to keep this in just in case. + if i_list.count(i) == 1: + square = squares_raw[i] + sq_cent = np.mean(square, axis=0) + ref_cent = reference[j] + sq_cents.append(sq_cent) + ref_cents.append(ref_cent) + + # At least four squares need to have voted for a centre in + # order for a transform to be found + if len(sq_cents) < 4: + raise MacbethError( + '\nWARNING: No macbeth chart found!' + '\nNot enough squares found' + '\nPossible problems:\n' + '- Macbeth chart is occluded\n' + '- Macbeth chart is too dark of bright\n' + ) + + ref_cents = np.array(ref_cents) + sq_cents = np.array(sq_cents) + + # Find best fit transform from normalised centres to image + h_mat, mask = cv2.findHomography(ref_cents, sq_cents) + if 'None' in str(type(h_mat)): + raise MacbethError( + '\nERROR\n' + ) + + # Transform normalised corners and centres into image space + mac_fit = cv2.perspectiveTransform(mac_norm, h_mat) + mac_cen_fit = cv2.perspectiveTransform(np.array([reference]), h_mat) + + # Transform located corners into reference space + ref_mat = cv2.getPerspectiveTransform( + mac_fit, + np.array([ref_corns]) + ) + map_to_ref = cv2.warpPerspective( + original_bw, ref_mat, + (ref_w, ref_h) + ) + + # Normalise brigthness + a = 125 / np.average(map_to_ref) + map_to_ref = cv2.convertScaleAbs(map_to_ref, alpha=a, beta=0) + + # Find correlation with bw reference macbeth + cor = correlate(map_to_ref, ref) + + # Keep only if best correlation + if cor > max_cor: + max_cor = cor + best_map = map_to_ref + best_fit = mac_fit + best_cen_fit = mac_cen_fit + best_ref_mat = ref_mat + + # Rotate macbeth by pi and recorrelate in case macbeth chart is + # upside-down + mac_fit_inv = np.array( + ([[mac_fit[0][2], mac_fit[0][3], + mac_fit[0][0], mac_fit[0][1]]]) + ) + mac_cen_fit_inv = np.flip(mac_cen_fit, axis=1) + ref_mat = cv2.getPerspectiveTransform( + mac_fit_inv, + np.array([ref_corns]) + ) + map_to_ref = cv2.warpPerspective( + original_bw, ref_mat, + (ref_w, ref_h) + ) + a = 125 / np.average(map_to_ref) + map_to_ref = cv2.convertScaleAbs(map_to_ref, alpha=a, beta=0) + cor = correlate(map_to_ref, ref) + if cor > max_cor: + max_cor = cor + best_map = map_to_ref + best_fit = mac_fit_inv + best_cen_fit = mac_cen_fit_inv + best_ref_mat = ref_mat + + # Check best match is above threshold + cor_thresh = 0.6 + if max_cor < cor_thresh: + raise MacbethError( + '\nWARNING: Correlation too low' + '\nPossible problems:\n' + '- Bad lighting conditions\n' + '- Macbeth chart is occluded\n' + '- Background is too noisy\n' + '- Macbeth chart is out of camera plane\n' + ) + + # Represent coloured macbeth in reference space + best_map_col = cv2.warpPerspective( + original, best_ref_mat, (ref_w, ref_h) + ) + best_map_col = cv2.resize( + best_map_col, None, fx=4, fy=4 + ) + a = 125 / np.average(best_map_col) + best_map_col_norm = cv2.convertScaleAbs( + best_map_col, alpha=a, beta=0 + ) + + # Rescale coordinates to original image size + fit_coords = (best_fit / factor, best_cen_fit / factor) + + return (max_cor, best_map_col_norm, fit_coords, True) + + # Catch macbeth errors and continue with code + except MacbethError as error: + eprint(error) + return (0, None, None, False) + + +def find_macbeth(img, mac_config): + small_chart = mac_config['small'] + show = mac_config['show'] + + # Catch the warnings + warnings.simplefilter("ignore") + warnings.warn("runtime", RuntimeWarning) + + # Reference macbeth chart is created that will be correlated with the + # located macbeth chart guess to produce a confidence value for the match. + script_dir = Path(os.path.realpath(os.path.dirname(__file__))) + macbeth_ref_path = script_dir.joinpath('macbeth_ref.pgm') + ref = cv2.imread(str(macbeth_ref_path), flags=cv2.IMREAD_GRAYSCALE) + ref_w = 120 + ref_h = 80 + rc1 = (0, 0) + rc2 = (0, ref_h) + rc3 = (ref_w, ref_h) + rc4 = (ref_w, 0) + ref_corns = np.array((rc1, rc2, rc3, rc4), np.float32) + ref_data = (ref, ref_w, ref_h, ref_corns) + + # Locate macbeth chart + cor, mac, coords, ret = get_macbeth_chart(img, ref_data) + + # Following bits of code try to fix common problems with simple techniques. + # If now or at any point the best correlation is of above 0.75, then + # nothing more is tried as this is a high enough confidence to ensure + # reliable macbeth square centre placement. + + for brightness in [2, 4]: + if cor >= 0.75: + break + img_br = cv2.convertScaleAbs(img, alpha=brightness, beta=0) + cor_b, mac_b, coords_b, ret_b = get_macbeth_chart(img_br, ref_data) + if cor_b > cor: + cor, mac, coords, ret = cor_b, mac_b, coords_b, ret_b + + # In case macbeth chart is too small, take a selection of the image and + # attempt to locate macbeth chart within that. The scale increment is + # root 2 + + # These variables will be used to transform the found coordinates at + # smaller scales back into the original. If ii is still -1 after this + # section that means it was not successful + ii = -1 + w_best = 0 + h_best = 0 + d_best = 100 + + # d_best records the scale of the best match. Macbeth charts are only looked + # for at one scale increment smaller than the current best match in order to avoid + # unecessarily searching for macbeth charts at small scales. + # If a macbeth chart ha already been found then set d_best to 0 + if cor != 0: + d_best = 0 + + for index, pair in enumerate([{'sel': 2 / 3, 'inc': 1 / 6}, + {'sel': 1 / 2, 'inc': 1 / 8}, + {'sel': 1 / 3, 'inc': 1 / 12}, + {'sel': 1 / 4, 'inc': 1 / 16}]): + if cor >= 0.75: + break + + # Check if we need to check macbeth charts at even smaller scales. This + # slows the code down significantly and has therefore been omitted by + # default, however it is not unusably slow so might be useful if the + # macbeth chart is too small to be picked up to by the current + # subselections. Use this for macbeth charts with side lengths around + # 1/5 image dimensions (and smaller...?) it is, however, recommended + # that macbeth charts take up as large as possible a proportion of the + # image. + if index >= 2 and (not small_chart or d_best <= index - 1): + break + + w, h = list(img.shape[:2]) + # Set dimensions of the subselection and the step along each axis + # between selections + w_sel = int(w * pair['sel']) + h_sel = int(h * pair['sel']) + w_inc = int(w * pair['inc']) + h_inc = int(h * pair['inc']) + + loop = ((1 - pair['sel']) / pair['inc']) + 1 + # For each subselection, look for a macbeth chart + for i in range(loop): + for j in range(loop): + w_s, h_s = i * w_inc, j * h_inc + img_sel = img[w_s:w_s + w_sel, h_s:h_s + h_sel] + cor_ij, mac_ij, coords_ij, ret_ij = get_macbeth_chart(img_sel, ref_data) + + # If the correlation is better than the best then record the + # scale and current subselection at which macbeth chart was + # found. Also record the coordinates, macbeth chart and message. + if cor_ij > cor: + cor = cor_ij + mac, coords, ret = mac_ij, coords_ij, ret_ij + ii, jj = i, j + w_best, h_best = w_inc, h_inc + d_best = index + 1 + + # Transform coordinates from subselection to original image + if ii != -1: + for a in range(len(coords)): + for b in range(len(coords[a][0])): + coords[a][0][b][1] += ii * w_best + coords[a][0][b][0] += jj * h_best + + if not ret: + return None + + coords_fit = coords + if cor < 0.75: + eprint(f'Warning: Low confidence {cor:.3f} for macbeth chart in {img.path.name}') + + if show: + draw_macbeth_results(img, coords_fit) + + return coords_fit + + +def locate_macbeth(image: Image, config: dict): + # Find macbeth centres + av_chan = (np.mean(np.array(image.channels), axis=0) / (2**16)) + av_val = np.mean(av_chan) + if av_val < image.blacklevel_16 / (2**16) + 1 / 64: + eprint(f'Image {image.path.name} too dark') + return None + + macbeth = find_macbeth(av_chan, config['general']['macbeth']) + + if macbeth is None: + eprint(f'No macbeth chart found in {image.path.name}') + return None + + mac_cen_coords = macbeth[1] + if not image.get_patches(mac_cen_coords): + eprint(f'Macbeth patches have saturated in {image.path.name}') + return None + + return macbeth diff --git a/utils/tuning/libtuning/macbeth_ref.pgm b/utils/tuning/libtuning/macbeth_ref.pgm new file mode 100644 index 00000000..37897140 --- /dev/null +++ b/utils/tuning/libtuning/macbeth_ref.pgm @@ -0,0 +1,6 @@ +# SPDX-License-Identifier: BSD-2-Clause +P5 +# Reference macbeth chart +120 80 +255 + !#!" #!"&&$#$#'"%&#+2///..../.........-()))))))))))))))))))(((-,*)'(&)#($%(%"###""!%""&"&&!$" #!$ !"! $&**" !#5.,%+,-5"0<HBAA54" %##((()*+,---.........+*)))))))))))))))-.,,--+))('((''('%'%##"!""!"!""""#! ! %/vz:Lc,!#""%%''')**+)-../..../.-*)))))))))))))**,,)**'(''&'((&&%%##$! !!!! ! ! ! 5*"-)&7(1.75Rnge`\`$ ""!"%%%'')())++--/---,-..,-.,++**))))())*)*)''%'%&%&'&%%""""" ! !!$&$$&##(+*,,/10122126545./66402006486869650*.1.***)*+)()&((('('##)('&%%&%$$$#$%$%$ (((*))('((('('(&%V0;>>;@@>@AAAACBCB=&<<5x|64RYVTSRRRMMNLKJJLH+&0gijgdeffmmnpnkji`#3bY! 3FHHIIIHIJIIJHIII@#?=7}:5Wcbcbdcb`^^`^^_^Y,'6r'<l%2FHHIIHJJJJJJIIJI?%;>7|;8Xfeeegeccb`^aba]Z+)<r)>q#3GHIIIIJIIJJIHIJI@&5=8~;8Zgghggedbdcbda^\Z+(;y)9z"3GIIJJJJJKJJJJJJJ@'4>9|=8Zhighgeeeedeca__[/)Bv&:|#3GJJIIJKKKJJJKKJK@&6>9~<8Yghegggffihccab^\/*Cz'9$ 6IKJJMMMKMKKMKKMLC&2@9<9Yghhhhijiegdcebc^0)G(7% 6JLMMNMMKMMNMMMMMD&2@:~=9Xfghhjiigdgddedc`1)M}(:¾& "8LNOONNOMONNMMNOND'3@;=:Ziiigheegegegggdc1,Q~)8%# "9NNNPPPQOOOOONNOOD'0?;=;[iigeeegghgdedgea0-P(8Ý' "#$:NNOQPPRPQPOOPQPPD*1A;;:Yfghgghgghghhdggc3.\~);¤(&%%;OQQQRSSRPQQQQSQQF)3B<=:Wfhghhhihggghfhee4/f*:ä&%%%?RSSSSSTTTTSSSTTRE)5B=@:Ygiihhiiiihihiiif72p}(9Ʃ'#%&?TUTTTUUQSTTTTTVSF*3F>A;[ghjiihiiiihihije50r)6ƫ& &#%?SVVVUUUUUTUUVVUUG*5F=A;Yhijiiijjiiiiijje81t~)5ư' '$$=OQRRQQPRSRSSSSSSG+6D@?;Wefgggggfffgeeefc41x{*5( &&&'++++,,*-,-00-0100*-SUX\]]`_ffgiooopo=;X\bedbadbca`]\]ZZ;;<::8:;9983433110/-,...1//12410/..--+)"",---,-./,,.-/-0-( &&%+/0103322011223233)(34534767::;;==:=B9;BFGEEGIKJKIJGIJCD=<:76566554111/0/1.*+00233300/00//..,+*#")(*)++,++))*++**'!!&$*w¼1-_addc`ceccdccedbb?A|B>=>?@@?====;<:;:<:11r+.( !'%*zɠ42gjmllklomooonpopmHGD>AEDEFEECEECCCDDEC460:Ѿ,!!&&,|ʡ61inknnoopoppoqqrqoEEFACGFFFFFFDFDDDDDDC5709+!"%%-~ʡ42inopppppoqqqrrsrnABC?DGGGGFFFFDFFDDEDC481;+!!"#*|ʡ62imoppppqqqqrtrqtrGDH?CGGGGGGGGFFFFFFDB381<Խ, !)}ˢ63mooppqqqqqqrrtvtoDHJACHHGGHGGFFFDDGGFD293>, $){ˢ53jpppqprqrrrttuvuo>HJAFHHHHHGGHGGFGGFFE283:ڽ- "*{̣53loqpqsqrrrtrutsvrAHHCGHIHHHHHHGFGHGGGD5;28, +}ʡ52mqoqpqrttttttuurpFIOCEHHIHHHHGHGGFFIGF8<48ۿ, (|ʢ41krqpqqqrrtrtuvtuoEHPBHHIIIHIIHIHGHGHHE7<58* (zʡ63kpqprqqstttutrvvoFOLEHHIIHIHHHIGHGIHGF4=5<* 'zȡ62lppqrqrrrtttuttvpAGMGHIIIIHIIIHHIIJHHG4<4<+ !){Ƞ62jopqqqqqrtttutttrEHOHFIIIIIJIIIIHIHIHI7>5;, !)zƟ53lppqqrqrtttuuuutsFIRHGJIJHJKJJJIIIIIIH9>5;+ !({Ŝ41joppprqrrrutttvvrIHTHCJJJJJIJIJJIJJJIH7=5;+ (u65gjlmmmnoopnpprpqoIHOIBIJJJIJJJJIIIHHHG8929ʾ' "&,-*)-01/,0/12102-+04448789<>>??AFAD@DBCIJNRWTSUXT[WUQUOKFEBBABA?>>=<<;;67942:<<<>9999864565363&(13335422./1/-+..+ !"&$$""$"&$%'()(''*+-0124688:<>>??A>?EBCHKOLJLNOSQOXQQVMLACGHGHIGFHGDCCBB@??7432233210111.,++,++%(++)*(''%%%$$#%&$# ")0/001120024455520+-U]`addcdhefeekecYGFJRXYYVWWZWVXXVZTOBF}K7Ybccddfeg`^]^]\[Z[*)OTTPPQPOKOLLJJLIK !1;:9:<<===;=???A@9*/FJmxyxwyzzzxyzzz{zxLO]=.-y# !!2><=;==>=<<>@@@@A9-0IKnz||{|{||{}}~}}{zLO]>..~% $2==;<>>?===>@A@AB;+1JJo{|y{||}{||}}}}}yMT_>-.}# %2<=;=<@?>==>?A@AA9+3FMlz{{y|}}}}||}|}}{MTd>-,# %1<<<;==<<=>?A?@AA:,3INo{{y{||||}|}}|~}{RTd=/-}#!$0<<<=<<==>A@@>@AA:-2HInzz{{||{{}~~}}|}zMRd=++~# "$/;<==>;===@@@@>AA:+2KHn||y|||||{}~}|}|xMSd=+,}# ! "/:<=>@<<>=@@@@@AA;-3MFs||{{{y}z}}|}|}}yMWc>,)|! !1;>?>><<>@>>=>ABB;,0LHr{|{|}|y|}}}}}zNXc?()z# $/;;<=;<>>=>>>@@BB:,1IInyz||||||{||}{~|{NVc;('}# $0:<==<;>@>>>>@ABB:,/HLlx|}y{y{|y{|}}}}yMRd>~*(y" !&3:;<<;==@@=>AABBA;-3KLqz{|||y{}|}{}|~{zRQc9w)'y" !%1<<;=>===<=@@ABBC<.5IIlz{|}~~~|}{||~}}zMUd;p)$x" $2===<==@=<>=ABBBC?/0IGkz}}{||}{||y||}zyOVc7o'&~~z"#"#/;<:<<?>;===@?AAA>07GGgwxz{yyxyzzyz{yuuHO\8v'$w~~}|||{~|{zxxxxv!"""'*+(+)*))()+,,.../0398;=<=>DCCDDCBBDHBCJMMLMPNPOJPKPSJDICCNMPONMNNOKHIFDBHE3/46433323.....*+,)( !##!!!!!$#$$#$#&"!!"(+**,,*+.//1478:<:33ACDFGGIIHIJLPKNMQFIPTTRVXVUXUUTXUSTNEGGFDEFAA>==;94877520-,))*(((('&$#!!" &%'FQPQR]dq=FQNLEznki^[YTPUOS;.%-/12322221/10//,/%#0@QQMKEH01NNQOQQOOMNNLKLJGB'&/AWOLKEF-,PQQPQPPQPOONMNNKE''0CZRMJEF,*NSQPPQOOOOMNNMKID('2D[QKIFF,*NPPPPPPNOONMMMJIF!'(2F]RLHDF+%MPPPPOOONONNMMKID)*4D^PLICF+&NPOOOPPOONMMKMKHD**6D_QJFC~F,'MPOOOOONONNKKIIIG,+7D^QIEB|E+&MONOOONNNNKMJKJHH,-8D]PIHEC,#LOOOONONNNKKKMKJF,*6CaMHIFD*%KONOMNMMKMKJJJIJE,,6B^MGHB}D+&LONOOONNMMMMKLKIA,,6A\MFIEE+&LNNMONNMMKKKKKIHF --6A[KFJCF*&LMONMNMNKKJMKJJIF **5>WKEF?}C*%KONNNJKKKMKJKJKID,*4<WMAGCxB)%HKLKKJJJKIHIHHFGC!()*qo39v|}wwwwwwrqtuspn=9^gadcfgce`dbUY[\^>;DIJDB?FEGE=7>8634.(&&(%&*&%%'+*)+*#%()''03364443233222243/-+133423333423766645789:><<<;<;<?=?;<<:78673/001113--.-+*)&&#"&$#%&""$!! ))+rbPpAD9-*******+*++)++--.//./.0/21453469:=;98<;<>=;><7766666741012.-13/-+-/(''&&&%%&$.%0()-%-#-#' #&(% )))hnYQg7(*))))*)**,--....../0/0001357666::;;>?>AA866666666656565300/20/.-*)(('((&&%)d=yoP<?FQFx;210))*RQ.0*,,5*(*))))*,**,+/.../...02/22224456468;:>BB;>;:76666666666755303033/,.-*(())('&')#)"##(+$+*#)) & diff --git a/utils/tuning/libtuning/utils.py b/utils/tuning/libtuning/utils.py new file mode 100644 index 00000000..b60f2c9b --- /dev/null +++ b/utils/tuning/libtuning/utils.py @@ -0,0 +1,125 @@ +# SPDX-License-Identifier: BSD-2-Clause +# +# Copyright (C) 2019, Raspberry Pi Ltd +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> +# +# utils.py - Utilities for libtuning + +import decimal +import math +import numpy as np +import os +from pathlib import Path +import re +import sys + +import libtuning as lt +from libtuning.image import Image +from libtuning.macbeth import locate_macbeth + +# Utility functions + + +def eprint(*args, **kwargs): + print(*args, file=sys.stderr, **kwargs) + + +def get_module_by_type_name(modules, name): + for module in modules: + if module.type == name: + return module + return None + + +# Private utility functions + + +def _list_image_files(directory): + d = Path(directory) + files = [d.joinpath(f) for f in os.listdir(d) + if re.search(r'\.(jp[e]g$)|(dng$)', f)] + files.sort() + return files + + +def _parse_image_filename(fn: Path): + result = re.search(r'^(alsc_)?(\d+)[kK]_(\d+)?[lLuU]?.\w{3,4}$', fn.name) + if result is None: + eprint(f'The file name of {fn.name} is incorrectly formatted') + return None, None, None + + color = int(result.group(2)) + lsc_only = result.group(1) is not None + lux = None if lsc_only else int(result.group(3)) + + return color, lux, lsc_only + + +# \todo Implement this from check_imgs() in ctt.py +def _validate_images(images): + return True + + +# Public utility functions + + +# @brief Load images into a single list of Image instances +# @param input_dir Directory from which to load image files +# @param config Configuration dictionary +# @param load_nonlsc Whether or not to load non-lsc images +# @param load_lsc Whether or not to load lsc-only images +# @return A list of Image instances +def load_images(input_dir: str, config: dict, load_nonlsc: bool, load_lsc: bool) -> list: + files = _list_image_files(input_dir) + if len(files) == 0: + eprint(f'No images found in {input_dir}') + return None + + images = [] + for f in files: + color, lux, lsc_only = _parse_image_filename(f) + if color is None: + continue + + # Skip lsc image if we don't need it + if lsc_only and not load_lsc: + eprint(f'Skipping {f.name} as this tuner has no LSC module') + continue + + # Skip non-lsc image if we don't need it + if not lsc_only and not load_nonlsc: + eprint(f'Skipping {f.name} as this tuner only has an LSC module') + continue + + # Load image + try: + image = Image(f) + except Exception as e: + eprint(f'Failed to load image {f.name}: {e}') + continue + + # Populate simple fields + image.lsc_only = lsc_only + image.color = color + image.lux = lux + + # Black level comes from the TIFF tags, but they are overridable by the + # config file. + if 'blacklevel' in config['general']: + image.blacklevel_16 = config['general']['blacklevel'] + + if lsc_only: + images.append(image) + continue + + # Handle macbeth + macbeth = locate_macbeth(config) + if macbeth is None: + continue + + images.append(image) + + if not _validate_images(images): + return None + + return images |