summaryrefslogtreecommitdiff
path: root/src/qcam/assets/feathericons/target.svg
diff options
context:
space:
mode:
Diffstat (limited to 'src/qcam/assets/feathericons/target.svg')
0 files changed, 0 insertions, 0 deletions
d='n104' href='#n104'>104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
/* SPDX-License-Identifier: BSD-2-Clause */
/*
 * Copyright (C) 2019, Raspberry Pi (Trading) Limited
 *
 * awb.hpp - AWB control algorithm
 */
#pragma once

#include <mutex>
#include <condition_variable>
#include <thread>

#include "../awb_algorithm.hpp"
#include "../pwl.hpp"
#include "../awb_status.h"

namespace RPiController {

// Control algorithm to perform AWB calculations.

struct AwbMode {
	void Read(boost::property_tree::ptree const &params);
	double ct_lo; // low CT value for search
	double ct_hi; // high CT value for search
};

struct AwbPrior {
	void Read(boost::property_tree::ptree const &params);
	double lux; // lux level
	Pwl prior; // maps CT to prior log likelihood for this lux level
};

struct AwbConfig {
	AwbConfig() : default_mode(nullptr) {}
	void Read(boost::property_tree::ptree const &params);
	// Only repeat the AWB calculation every "this many" frames
	uint16_t frame_period;
	// number of initial frames for which speed taken as 1.0 (maximum)
	uint16_t startup_frames;
	unsigned int convergence_frames; // approx number of frames to converge
	double speed; // IIR filter speed applied to algorithm results
	bool fast; // "fast" mode uses a 16x16 rather than 32x32 grid
	Pwl ct_r; // function maps CT to r (= R/G)
	Pwl ct_b; // function maps CT to b (= B/G)
	// table of illuminant priors at different lux levels
	std::vector<AwbPrior> priors;
	// AWB "modes" (determines the search range)
	std::map<std::string, AwbMode> modes;
	AwbMode *default_mode; // mode used if no mode selected
	// minimum proportion of pixels counted within AWB region for it to be
	// "useful"
	double min_pixels;
	// minimum G value of those pixels, to be regarded a "useful"
	uint16_t min_G;
	// number of AWB regions that must be "useful" in order to do the AWB
	// calculation
	uint32_t min_regions;
	// clamp on colour error term (so as not to penalise non-grey excessively)
	double delta_limit;
	// step size control in coarse search
	double coarse_step;
	// how far to wander off CT curve towards "more purple"
	double transverse_pos;
	// how far to wander off CT curve towards "more green"
	double transverse_neg;
	// red sensitivity ratio (set to canonical sensor's R/G divided by this
	// sensor's R/G)
	double sensitivity_r;
	// blue sensitivity ratio (set to canonical sensor's B/G divided by this
	// sensor's B/G)
	double sensitivity_b;
	// The whitepoint (which we normally "aim" for) can be moved.
	double whitepoint_r;
	double whitepoint_b;
	bool bayes; // use Bayesian algorithm
};

class Awb : public AwbAlgorithm
{
public:
	Awb(Controller *controller = NULL);
	~Awb();
	char const *Name() const override;
	void Initialise() override;
	void Read(boost::property_tree::ptree const &params) override;
	// AWB handles "pausing" for itself.
	bool IsPaused() const override;
	void Pause() override;
	void Resume() override;
	unsigned int GetConvergenceFrames() const override;
	void SetMode(std::string const &name) override;
	void SetManualGains(double manual_r, double manual_b) override;
	void SwitchMode(CameraMode const &camera_mode, Metadata *metadata) override;
	void Prepare(Metadata *image_metadata) override;
	void Process(StatisticsPtr &stats, Metadata *image_metadata) override;
	struct RGB {
		RGB(double _R = 0, double _G = 0, double _B = 0)
			: R(_R), G(_G), B(_B)
		{
		}
		double R, G, B;
		RGB &operator+=(RGB const &other)
		{
			R += other.R, G += other.G, B += other.B;
			return *this;
		}
	};

private:
	bool isAutoEnabled() const;
	// configuration is read-only, and available to both threads
	AwbConfig config_;
	std::thread async_thread_;
	void asyncFunc(); // asynchronous thread function
	std::mutex mutex_;
	// condvar for async thread to wait on
	std::condition_variable async_signal_;
	// condvar for synchronous thread to wait on
	std::condition_variable sync_signal_;
	// for sync thread to check  if async thread finished (requires mutex)
	bool async_finished_;
	// for async thread to check if it's been told to run (requires mutex)
	bool async_start_;
	// for async thread to check if it's been told to quit (requires mutex)
	bool async_abort_;

	// The following are only for the synchronous thread to use:
	// for sync thread to note its has asked async thread to run
	bool async_started_;
	// counts up to frame_period before restarting the async thread
	int frame_phase_;
	int frame_count_; // counts up to startup_frames
	AwbStatus sync_results_;
	AwbStatus prev_sync_results_;
	std::string mode_name_;
	// The following are for the asynchronous thread to use, though the main
	// thread can set/reset them if the async thread is known to be idle:
	void restartAsync(StatisticsPtr &stats, double lux);
	// copy out the results from the async thread so that it can be restarted
	void fetchAsyncResults();
	StatisticsPtr statistics_;
	AwbMode *mode_;
	double lux_;
	AwbStatus async_results_;
	void doAwb();
	void awbBayes();
	void awbGrey();
	void prepareStats();
	double computeDelta2Sum(double gain_r, double gain_b);
	Pwl interpolatePrior();
	double coarseSearch(Pwl const &prior);
	void fineSearch(double &t, double &r, double &b, Pwl const &prior);
	std::vector<RGB> zones_;
	std::vector<Pwl::Point> points_;
	// manual r setting
	double manual_r_;
	// manual b setting
	double manual_b_;
	bool first_switch_mode_; // is this the first call to SwitchMode?
};

static inline Awb::RGB operator+(Awb::RGB const &a, Awb::RGB const &b)
{
	return Awb::RGB(a.R + b.R, a.G + b.G, a.B + b.B);
}
static inline Awb::RGB operator-(Awb::RGB const &a, Awb::RGB const &b)
{
	return Awb::RGB(a.R - b.R, a.G - b.G, a.B - b.B);
}
static inline Awb::RGB operator*(double d, Awb::RGB const &rgb)
{
	return Awb::RGB(d * rgb.R, d * rgb.G, d * rgb.B);
}
static inline Awb::RGB operator*(Awb::RGB const &rgb, double d)
{
	return d * rgb;
}

} // namespace RPiController