summaryrefslogtreecommitdiff
path: root/src/py/cam/cam_qt.py
diff options
context:
space:
mode:
Diffstat (limited to 'src/py/cam/cam_qt.py')
-rw-r--r--src/py/cam/cam_qt.py354
1 files changed, 354 insertions, 0 deletions
diff --git a/src/py/cam/cam_qt.py b/src/py/cam/cam_qt.py
new file mode 100644
index 00000000..5753f0b2
--- /dev/null
+++ b/src/py/cam/cam_qt.py
@@ -0,0 +1,354 @@
+# SPDX-License-Identifier: GPL-2.0-or-later
+# Copyright (C) 2022, Tomi Valkeinen <tomi.valkeinen@ideasonboard.com>
+#
+# Debayering code from PiCamera documentation
+
+from io import BytesIO
+from numpy.lib.stride_tricks import as_strided
+from PIL import Image
+from PIL.ImageQt import ImageQt
+from PyQt5 import QtCore, QtGui, QtWidgets
+import numpy as np
+import sys
+
+
+def rgb_to_pix(rgb):
+ img = Image.frombuffer('RGB', (rgb.shape[1], rgb.shape[0]), rgb)
+ qim = ImageQt(img).copy()
+ pix = QtGui.QPixmap.fromImage(qim)
+ return pix
+
+
+def separate_components(data, r0, g0, g1, b0):
+ # Now to split the data up into its red, green, and blue components. The
+ # Bayer pattern of the OV5647 sensor is BGGR. In other words the first
+ # row contains alternating green/blue elements, the second row contains
+ # alternating red/green elements, and so on as illustrated below:
+ #
+ # GBGBGBGBGBGBGB
+ # RGRGRGRGRGRGRG
+ # GBGBGBGBGBGBGB
+ # RGRGRGRGRGRGRG
+ #
+ # Please note that if you use vflip or hflip to change the orientation
+ # of the capture, you must flip the Bayer pattern accordingly
+
+ rgb = np.zeros(data.shape + (3,), dtype=data.dtype)
+ rgb[r0[1]::2, r0[0]::2, 0] = data[r0[1]::2, r0[0]::2] # Red
+ rgb[g0[1]::2, g0[0]::2, 1] = data[g0[1]::2, g0[0]::2] # Green
+ rgb[g1[1]::2, g1[0]::2, 1] = data[g1[1]::2, g1[0]::2] # Green
+ rgb[b0[1]::2, b0[0]::2, 2] = data[b0[1]::2, b0[0]::2] # Blue
+
+ return rgb
+
+
+def demosaic(rgb, r0, g0, g1, b0):
+ # At this point we now have the raw Bayer data with the correct values
+ # and colors but the data still requires de-mosaicing and
+ # post-processing. If you wish to do this yourself, end the script here!
+ #
+ # Below we present a fairly naive de-mosaic method that simply
+ # calculates the weighted average of a pixel based on the pixels
+ # surrounding it. The weighting is provided b0[1] a b0[1]te representation of
+ # the Bayer filter which we construct first:
+
+ bayer = np.zeros(rgb.shape, dtype=np.uint8)
+ bayer[r0[1]::2, r0[0]::2, 0] = 1 # Red
+ bayer[g0[1]::2, g0[0]::2, 1] = 1 # Green
+ bayer[g1[1]::2, g1[0]::2, 1] = 1 # Green
+ bayer[b0[1]::2, b0[0]::2, 2] = 1 # Blue
+
+ # Allocate an array to hold our output with the same shape as the input
+ # data. After this we define the size of window that will be used to
+ # calculate each weighted average (3x3). Then we pad out the rgb and
+ # bayer arrays, adding blank pixels at their edges to compensate for the
+ # size of the window when calculating averages for edge pixels.
+
+ output = np.empty(rgb.shape, dtype=rgb.dtype)
+ window = (3, 3)
+ borders = (window[0] - 1, window[1] - 1)
+ border = (borders[0] // 2, borders[1] // 2)
+
+ # rgb_pad = np.zeros((
+ # rgb.shape[0] + borders[0],
+ # rgb.shape[1] + borders[1],
+ # rgb.shape[2]), dtype=rgb.dtype)
+ # rgb_pad[
+ # border[0]:rgb_pad.shape[0] - border[0],
+ # border[1]:rgb_pad.shape[1] - border[1],
+ # :] = rgb
+ # rgb = rgb_pad
+ #
+ # bayer_pad = np.zeros((
+ # bayer.shape[0] + borders[0],
+ # bayer.shape[1] + borders[1],
+ # bayer.shape[2]), dtype=bayer.dtype)
+ # bayer_pad[
+ # border[0]:bayer_pad.shape[0] - border[0],
+ # border[1]:bayer_pad.shape[1] - border[1],
+ # :] = bayer
+ # bayer = bayer_pad
+
+ # In numpy >=1.7.0 just use np.pad (version in Raspbian is 1.6.2 at the
+ # time of writing...)
+ #
+ rgb = np.pad(rgb, [
+ (border[0], border[0]),
+ (border[1], border[1]),
+ (0, 0),
+ ], 'constant')
+ bayer = np.pad(bayer, [
+ (border[0], border[0]),
+ (border[1], border[1]),
+ (0, 0),
+ ], 'constant')
+
+ # For each plane in the RGB data, we use a nifty numpy trick
+ # (as_strided) to construct a view over the plane of 3x3 matrices. We do
+ # the same for the bayer array, then use Einstein summation on each
+ # (np.sum is simpler, but copies the data so it's slower), and divide
+ # the results to get our weighted average:
+
+ for plane in range(3):
+ p = rgb[..., plane]
+ b = bayer[..., plane]
+ pview = as_strided(p, shape=(
+ p.shape[0] - borders[0],
+ p.shape[1] - borders[1]) + window, strides=p.strides * 2)
+ bview = as_strided(b, shape=(
+ b.shape[0] - borders[0],
+ b.shape[1] - borders[1]) + window, strides=b.strides * 2)
+ psum = np.einsum('ijkl->ij', pview)
+ bsum = np.einsum('ijkl->ij', bview)
+ output[..., plane] = psum // bsum
+
+ return output
+
+
+def to_rgb(fmt, size, data):
+ w = size[0]
+ h = size[1]
+
+ if fmt == 'YUYV':
+ # YUV422
+ yuyv = data.reshape((h, w // 2 * 4))
+
+ # YUV444
+ yuv = np.empty((h, w, 3), dtype=np.uint8)
+ yuv[:, :, 0] = yuyv[:, 0::2] # Y
+ yuv[:, :, 1] = yuyv[:, 1::4].repeat(2, axis=1) # U
+ yuv[:, :, 2] = yuyv[:, 3::4].repeat(2, axis=1) # V
+
+ m = np.array([
+ [1.0, 1.0, 1.0],
+ [-0.000007154783816076815, -0.3441331386566162, 1.7720025777816772],
+ [1.4019975662231445, -0.7141380310058594, 0.00001542569043522235]
+ ])
+
+ rgb = np.dot(yuv, m)
+ rgb[:, :, 0] -= 179.45477266423404
+ rgb[:, :, 1] += 135.45870971679688
+ rgb[:, :, 2] -= 226.8183044444304
+ rgb = rgb.astype(np.uint8)
+
+ elif fmt == 'RGB888':
+ rgb = data.reshape((h, w, 3))
+ rgb[:, :, [0, 1, 2]] = rgb[:, :, [2, 1, 0]]
+
+ elif fmt == 'BGR888':
+ rgb = data.reshape((h, w, 3))
+
+ elif fmt in ['ARGB8888', 'XRGB8888']:
+ rgb = data.reshape((h, w, 4))
+ rgb = np.flip(rgb, axis=2)
+ # drop alpha component
+ rgb = np.delete(rgb, np.s_[0::4], axis=2)
+
+ elif fmt.startswith('S'):
+ bayer_pattern = fmt[1:5]
+ bitspp = int(fmt[5:])
+
+ # TODO: shifting leaves the lowest bits 0
+ if bitspp == 8:
+ data = data.reshape((h, w))
+ data = data.astype(np.uint16) << 8
+ elif bitspp in [10, 12]:
+ data = data.view(np.uint16)
+ data = data.reshape((h, w))
+ data = data << (16 - bitspp)
+ else:
+ raise Exception('Bad bitspp:' + str(bitspp))
+
+ idx = bayer_pattern.find('R')
+ assert(idx != -1)
+ r0 = (idx % 2, idx // 2)
+
+ idx = bayer_pattern.find('G')
+ assert(idx != -1)
+ g0 = (idx % 2, idx // 2)
+
+ idx = bayer_pattern.find('G', idx + 1)
+ assert(idx != -1)
+ g1 = (idx % 2, idx // 2)
+
+ idx = bayer_pattern.find('B')
+ assert(idx != -1)
+ b0 = (idx % 2, idx // 2)
+
+ rgb = separate_components(data, r0, g0, g1, b0)
+ rgb = demosaic(rgb, r0, g0, g1, b0)
+ rgb = (rgb >> 8).astype(np.uint8)
+
+ else:
+ rgb = None
+
+ return rgb
+
+
+class QtRenderer:
+ def __init__(self, state):
+ self.state = state
+
+ self.cm = state['cm']
+ self.contexts = state['contexts']
+
+ def setup(self):
+ self.app = QtWidgets.QApplication([])
+
+ windows = []
+
+ for ctx in self.contexts:
+ camera = ctx['camera']
+
+ for stream in ctx['streams']:
+ fmt = stream.configuration.pixel_format
+ size = stream.configuration.size
+
+ window = MainWindow(ctx, stream)
+ window.setAttribute(QtCore.Qt.WA_ShowWithoutActivating)
+ window.show()
+ windows.append(window)
+
+ self.windows = windows
+
+ def run(self):
+ camnotif = QtCore.QSocketNotifier(self.cm.efd, QtCore.QSocketNotifier.Read)
+ camnotif.activated.connect(lambda x: self.readcam())
+
+ keynotif = QtCore.QSocketNotifier(sys.stdin.fileno(), QtCore.QSocketNotifier.Read)
+ keynotif.activated.connect(lambda x: self.readkey())
+
+ print('Capturing...')
+
+ self.app.exec()
+
+ print('Exiting...')
+
+ def readcam(self):
+ running = self.state['event_handler'](self.state)
+
+ if not running:
+ self.app.quit()
+
+ def readkey(self):
+ sys.stdin.readline()
+ self.app.quit()
+
+ def request_handler(self, ctx, req):
+ buffers = req.buffers
+
+ for stream, fb in buffers.items():
+ wnd = next(wnd for wnd in self.windows if wnd.stream == stream)
+
+ wnd.handle_request(stream, fb)
+
+ self.state['request_prcessed'](ctx, req)
+
+ def cleanup(self):
+ for w in self.windows:
+ w.close()
+
+
+class MainWindow(QtWidgets.QWidget):
+ def __init__(self, ctx, stream):
+ super().__init__()
+
+ self.ctx = ctx
+ self.stream = stream
+
+ self.label = QtWidgets.QLabel()
+
+ windowLayout = QtWidgets.QHBoxLayout()
+ self.setLayout(windowLayout)
+
+ windowLayout.addWidget(self.label)
+
+ controlsLayout = QtWidgets.QVBoxLayout()
+ windowLayout.addLayout(controlsLayout)
+
+ windowLayout.addStretch()
+
+ group = QtWidgets.QGroupBox('Info')
+ groupLayout = QtWidgets.QVBoxLayout()
+ group.setLayout(groupLayout)
+ controlsLayout.addWidget(group)
+
+ lab = QtWidgets.QLabel(ctx['id'])
+ groupLayout.addWidget(lab)
+
+ self.frameLabel = QtWidgets.QLabel()
+ groupLayout.addWidget(self.frameLabel)
+
+ group = QtWidgets.QGroupBox('Properties')
+ groupLayout = QtWidgets.QVBoxLayout()
+ group.setLayout(groupLayout)
+ controlsLayout.addWidget(group)
+
+ camera = ctx['camera']
+
+ for k, v in camera.properties.items():
+ lab = QtWidgets.QLabel()
+ lab.setText(k + ' = ' + str(v))
+ groupLayout.addWidget(lab)
+
+ group = QtWidgets.QGroupBox('Controls')
+ groupLayout = QtWidgets.QVBoxLayout()
+ group.setLayout(groupLayout)
+ controlsLayout.addWidget(group)
+
+ for k, (min, max, default) in camera.controls.items():
+ lab = QtWidgets.QLabel()
+ lab.setText('{} = {}/{}/{}'.format(k, min, max, default))
+ groupLayout.addWidget(lab)
+
+ controlsLayout.addStretch()
+
+ def buf_to_qpixmap(self, stream, fb):
+ with fb.mmap() as mfb:
+ cfg = stream.configuration
+ w, h = cfg.size
+ pitch = cfg.stride
+
+ if cfg.pixel_format == 'MJPEG':
+ img = Image.open(BytesIO(mfb.planes[0]))
+ qim = ImageQt(img).copy()
+ pix = QtGui.QPixmap.fromImage(qim)
+ else:
+ data = np.array(mfb.planes[0], dtype=np.uint8)
+ rgb = to_rgb(cfg.pixel_format, cfg.size, data)
+
+ if rgb is None:
+ raise Exception('Format not supported: ' + cfg.pixel_format)
+
+ pix = rgb_to_pix(rgb)
+
+ return pix
+
+ def handle_request(self, stream, fb):
+ ctx = self.ctx
+
+ pix = self.buf_to_qpixmap(stream, fb)
+ self.label.setPixmap(pix)
+
+ self.frameLabel.setText('Queued: {}\nDone: {}\nFps: {:.2f}'
+ .format(ctx['reqs-queued'], ctx['reqs-completed'], ctx['fps']))