diff options
Diffstat (limited to 'src/py/cam/cam_qt.py')
-rw-r--r-- | src/py/cam/cam_qt.py | 354 |
1 files changed, 354 insertions, 0 deletions
diff --git a/src/py/cam/cam_qt.py b/src/py/cam/cam_qt.py new file mode 100644 index 00000000..5753f0b2 --- /dev/null +++ b/src/py/cam/cam_qt.py @@ -0,0 +1,354 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# Copyright (C) 2022, Tomi Valkeinen <tomi.valkeinen@ideasonboard.com> +# +# Debayering code from PiCamera documentation + +from io import BytesIO +from numpy.lib.stride_tricks import as_strided +from PIL import Image +from PIL.ImageQt import ImageQt +from PyQt5 import QtCore, QtGui, QtWidgets +import numpy as np +import sys + + +def rgb_to_pix(rgb): + img = Image.frombuffer('RGB', (rgb.shape[1], rgb.shape[0]), rgb) + qim = ImageQt(img).copy() + pix = QtGui.QPixmap.fromImage(qim) + return pix + + +def separate_components(data, r0, g0, g1, b0): + # Now to split the data up into its red, green, and blue components. The + # Bayer pattern of the OV5647 sensor is BGGR. In other words the first + # row contains alternating green/blue elements, the second row contains + # alternating red/green elements, and so on as illustrated below: + # + # GBGBGBGBGBGBGB + # RGRGRGRGRGRGRG + # GBGBGBGBGBGBGB + # RGRGRGRGRGRGRG + # + # Please note that if you use vflip or hflip to change the orientation + # of the capture, you must flip the Bayer pattern accordingly + + rgb = np.zeros(data.shape + (3,), dtype=data.dtype) + rgb[r0[1]::2, r0[0]::2, 0] = data[r0[1]::2, r0[0]::2] # Red + rgb[g0[1]::2, g0[0]::2, 1] = data[g0[1]::2, g0[0]::2] # Green + rgb[g1[1]::2, g1[0]::2, 1] = data[g1[1]::2, g1[0]::2] # Green + rgb[b0[1]::2, b0[0]::2, 2] = data[b0[1]::2, b0[0]::2] # Blue + + return rgb + + +def demosaic(rgb, r0, g0, g1, b0): + # At this point we now have the raw Bayer data with the correct values + # and colors but the data still requires de-mosaicing and + # post-processing. If you wish to do this yourself, end the script here! + # + # Below we present a fairly naive de-mosaic method that simply + # calculates the weighted average of a pixel based on the pixels + # surrounding it. The weighting is provided b0[1] a b0[1]te representation of + # the Bayer filter which we construct first: + + bayer = np.zeros(rgb.shape, dtype=np.uint8) + bayer[r0[1]::2, r0[0]::2, 0] = 1 # Red + bayer[g0[1]::2, g0[0]::2, 1] = 1 # Green + bayer[g1[1]::2, g1[0]::2, 1] = 1 # Green + bayer[b0[1]::2, b0[0]::2, 2] = 1 # Blue + + # Allocate an array to hold our output with the same shape as the input + # data. After this we define the size of window that will be used to + # calculate each weighted average (3x3). Then we pad out the rgb and + # bayer arrays, adding blank pixels at their edges to compensate for the + # size of the window when calculating averages for edge pixels. + + output = np.empty(rgb.shape, dtype=rgb.dtype) + window = (3, 3) + borders = (window[0] - 1, window[1] - 1) + border = (borders[0] // 2, borders[1] // 2) + + # rgb_pad = np.zeros(( + # rgb.shape[0] + borders[0], + # rgb.shape[1] + borders[1], + # rgb.shape[2]), dtype=rgb.dtype) + # rgb_pad[ + # border[0]:rgb_pad.shape[0] - border[0], + # border[1]:rgb_pad.shape[1] - border[1], + # :] = rgb + # rgb = rgb_pad + # + # bayer_pad = np.zeros(( + # bayer.shape[0] + borders[0], + # bayer.shape[1] + borders[1], + # bayer.shape[2]), dtype=bayer.dtype) + # bayer_pad[ + # border[0]:bayer_pad.shape[0] - border[0], + # border[1]:bayer_pad.shape[1] - border[1], + # :] = bayer + # bayer = bayer_pad + + # In numpy >=1.7.0 just use np.pad (version in Raspbian is 1.6.2 at the + # time of writing...) + # + rgb = np.pad(rgb, [ + (border[0], border[0]), + (border[1], border[1]), + (0, 0), + ], 'constant') + bayer = np.pad(bayer, [ + (border[0], border[0]), + (border[1], border[1]), + (0, 0), + ], 'constant') + + # For each plane in the RGB data, we use a nifty numpy trick + # (as_strided) to construct a view over the plane of 3x3 matrices. We do + # the same for the bayer array, then use Einstein summation on each + # (np.sum is simpler, but copies the data so it's slower), and divide + # the results to get our weighted average: + + for plane in range(3): + p = rgb[..., plane] + b = bayer[..., plane] + pview = as_strided(p, shape=( + p.shape[0] - borders[0], + p.shape[1] - borders[1]) + window, strides=p.strides * 2) + bview = as_strided(b, shape=( + b.shape[0] - borders[0], + b.shape[1] - borders[1]) + window, strides=b.strides * 2) + psum = np.einsum('ijkl->ij', pview) + bsum = np.einsum('ijkl->ij', bview) + output[..., plane] = psum // bsum + + return output + + +def to_rgb(fmt, size, data): + w = size[0] + h = size[1] + + if fmt == 'YUYV': + # YUV422 + yuyv = data.reshape((h, w // 2 * 4)) + + # YUV444 + yuv = np.empty((h, w, 3), dtype=np.uint8) + yuv[:, :, 0] = yuyv[:, 0::2] # Y + yuv[:, :, 1] = yuyv[:, 1::4].repeat(2, axis=1) # U + yuv[:, :, 2] = yuyv[:, 3::4].repeat(2, axis=1) # V + + m = np.array([ + [1.0, 1.0, 1.0], + [-0.000007154783816076815, -0.3441331386566162, 1.7720025777816772], + [1.4019975662231445, -0.7141380310058594, 0.00001542569043522235] + ]) + + rgb = np.dot(yuv, m) + rgb[:, :, 0] -= 179.45477266423404 + rgb[:, :, 1] += 135.45870971679688 + rgb[:, :, 2] -= 226.8183044444304 + rgb = rgb.astype(np.uint8) + + elif fmt == 'RGB888': + rgb = data.reshape((h, w, 3)) + rgb[:, :, [0, 1, 2]] = rgb[:, :, [2, 1, 0]] + + elif fmt == 'BGR888': + rgb = data.reshape((h, w, 3)) + + elif fmt in ['ARGB8888', 'XRGB8888']: + rgb = data.reshape((h, w, 4)) + rgb = np.flip(rgb, axis=2) + # drop alpha component + rgb = np.delete(rgb, np.s_[0::4], axis=2) + + elif fmt.startswith('S'): + bayer_pattern = fmt[1:5] + bitspp = int(fmt[5:]) + + # TODO: shifting leaves the lowest bits 0 + if bitspp == 8: + data = data.reshape((h, w)) + data = data.astype(np.uint16) << 8 + elif bitspp in [10, 12]: + data = data.view(np.uint16) + data = data.reshape((h, w)) + data = data << (16 - bitspp) + else: + raise Exception('Bad bitspp:' + str(bitspp)) + + idx = bayer_pattern.find('R') + assert(idx != -1) + r0 = (idx % 2, idx // 2) + + idx = bayer_pattern.find('G') + assert(idx != -1) + g0 = (idx % 2, idx // 2) + + idx = bayer_pattern.find('G', idx + 1) + assert(idx != -1) + g1 = (idx % 2, idx // 2) + + idx = bayer_pattern.find('B') + assert(idx != -1) + b0 = (idx % 2, idx // 2) + + rgb = separate_components(data, r0, g0, g1, b0) + rgb = demosaic(rgb, r0, g0, g1, b0) + rgb = (rgb >> 8).astype(np.uint8) + + else: + rgb = None + + return rgb + + +class QtRenderer: + def __init__(self, state): + self.state = state + + self.cm = state['cm'] + self.contexts = state['contexts'] + + def setup(self): + self.app = QtWidgets.QApplication([]) + + windows = [] + + for ctx in self.contexts: + camera = ctx['camera'] + + for stream in ctx['streams']: + fmt = stream.configuration.pixel_format + size = stream.configuration.size + + window = MainWindow(ctx, stream) + window.setAttribute(QtCore.Qt.WA_ShowWithoutActivating) + window.show() + windows.append(window) + + self.windows = windows + + def run(self): + camnotif = QtCore.QSocketNotifier(self.cm.efd, QtCore.QSocketNotifier.Read) + camnotif.activated.connect(lambda x: self.readcam()) + + keynotif = QtCore.QSocketNotifier(sys.stdin.fileno(), QtCore.QSocketNotifier.Read) + keynotif.activated.connect(lambda x: self.readkey()) + + print('Capturing...') + + self.app.exec() + + print('Exiting...') + + def readcam(self): + running = self.state['event_handler'](self.state) + + if not running: + self.app.quit() + + def readkey(self): + sys.stdin.readline() + self.app.quit() + + def request_handler(self, ctx, req): + buffers = req.buffers + + for stream, fb in buffers.items(): + wnd = next(wnd for wnd in self.windows if wnd.stream == stream) + + wnd.handle_request(stream, fb) + + self.state['request_prcessed'](ctx, req) + + def cleanup(self): + for w in self.windows: + w.close() + + +class MainWindow(QtWidgets.QWidget): + def __init__(self, ctx, stream): + super().__init__() + + self.ctx = ctx + self.stream = stream + + self.label = QtWidgets.QLabel() + + windowLayout = QtWidgets.QHBoxLayout() + self.setLayout(windowLayout) + + windowLayout.addWidget(self.label) + + controlsLayout = QtWidgets.QVBoxLayout() + windowLayout.addLayout(controlsLayout) + + windowLayout.addStretch() + + group = QtWidgets.QGroupBox('Info') + groupLayout = QtWidgets.QVBoxLayout() + group.setLayout(groupLayout) + controlsLayout.addWidget(group) + + lab = QtWidgets.QLabel(ctx['id']) + groupLayout.addWidget(lab) + + self.frameLabel = QtWidgets.QLabel() + groupLayout.addWidget(self.frameLabel) + + group = QtWidgets.QGroupBox('Properties') + groupLayout = QtWidgets.QVBoxLayout() + group.setLayout(groupLayout) + controlsLayout.addWidget(group) + + camera = ctx['camera'] + + for k, v in camera.properties.items(): + lab = QtWidgets.QLabel() + lab.setText(k + ' = ' + str(v)) + groupLayout.addWidget(lab) + + group = QtWidgets.QGroupBox('Controls') + groupLayout = QtWidgets.QVBoxLayout() + group.setLayout(groupLayout) + controlsLayout.addWidget(group) + + for k, (min, max, default) in camera.controls.items(): + lab = QtWidgets.QLabel() + lab.setText('{} = {}/{}/{}'.format(k, min, max, default)) + groupLayout.addWidget(lab) + + controlsLayout.addStretch() + + def buf_to_qpixmap(self, stream, fb): + with fb.mmap() as mfb: + cfg = stream.configuration + w, h = cfg.size + pitch = cfg.stride + + if cfg.pixel_format == 'MJPEG': + img = Image.open(BytesIO(mfb.planes[0])) + qim = ImageQt(img).copy() + pix = QtGui.QPixmap.fromImage(qim) + else: + data = np.array(mfb.planes[0], dtype=np.uint8) + rgb = to_rgb(cfg.pixel_format, cfg.size, data) + + if rgb is None: + raise Exception('Format not supported: ' + cfg.pixel_format) + + pix = rgb_to_pix(rgb) + + return pix + + def handle_request(self, stream, fb): + ctx = self.ctx + + pix = self.buf_to_qpixmap(stream, fb) + self.label.setPixmap(pix) + + self.frameLabel.setText('Queued: {}\nDone: {}\nFps: {:.2f}' + .format(ctx['reqs-queued'], ctx['reqs-completed'], ctx['fps'])) |