diff options
author | Laurent Pinchart <laurent.pinchart@ideasonboard.com> | 2020-05-02 03:32:00 +0300 |
---|---|---|
committer | Laurent Pinchart <laurent.pinchart@ideasonboard.com> | 2020-05-13 16:56:39 +0300 |
commit | 93a133fb17ea6997a42e9d7f07e3c7785abc7d14 (patch) | |
tree | 5c413f35b907dd2b9fb0902834c43881cb2adea8 /utils/raspberrypi/ctt/ctt_awb.py | |
parent | 7a653369cb42e1611b884f4a16de60d1b60aa8e7 (diff) |
utils: raspberrypi: ctt: Fix pycodestyle E231
E231 missing whitespace after ','
E231 missing whitespace after ':'
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
Reviewed-by: David Plowman <david.plowman@raspberrypi.com>
Diffstat (limited to 'utils/raspberrypi/ctt/ctt_awb.py')
-rw-r--r-- | utils/raspberrypi/ctt/ctt_awb.py | 118 |
1 files changed, 59 insertions, 59 deletions
diff --git a/utils/raspberrypi/ctt/ctt_awb.py b/utils/raspberrypi/ctt/ctt_awb.py index d3130612..9a92033b 100644 --- a/utils/raspberrypi/ctt/ctt_awb.py +++ b/utils/raspberrypi/ctt/ctt_awb.py @@ -12,7 +12,7 @@ from scipy.optimize import fmin """ obtain piecewise linear approximation for colour curve """ -def awb(Cam,cal_cr_list,cal_cb_list,plot): +def awb(Cam, cal_cr_list, cal_cb_list, plot): imgs = Cam.imgs """ condense alsc calibration tables into one dictionary @@ -21,7 +21,7 @@ def awb(Cam,cal_cr_list,cal_cb_list,plot): colour_cals = None else: colour_cals = {} - for cr,cb in zip(cal_cr_list,cal_cb_list): + for cr, cb in zip(cal_cr_list, cal_cb_list): cr_tab = cr['table'] cb_tab = cb['table'] """ @@ -29,7 +29,7 @@ def awb(Cam,cal_cr_list,cal_cb_list,plot): """ cr_tab= cr_tab/np.min(cr_tab) cb_tab= cb_tab/np.min(cb_tab) - colour_cals[cr['ct']] = [cr_tab,cb_tab] + colour_cals[cr['ct']] = [cr_tab, cb_tab] """ obtain data from greyscale macbeth patches """ @@ -42,17 +42,17 @@ def awb(Cam,cal_cr_list,cal_cb_list,plot): Note: if alsc is disabled then colour_cals will be set to None and the function will just return the greyscale patches """ - r_patchs,b_patchs,g_patchs = get_alsc_patches(Img,colour_cals) + r_patchs, b_patchs, g_patchs = get_alsc_patches(Img, colour_cals) """ - calculate ratio of r,b to g + calculate ratio of r, b to g """ r_g = np.mean(r_patchs/g_patchs) b_g = np.mean(b_patchs/g_patchs) - Cam.log += '\n r : {:.4f} b : {:.4f}'.format(r_g,b_g) + Cam.log += '\n r : {:.4f} b : {:.4f}'.format(r_g, b_g) """ The curve tends to be better behaved in so-called hatspace. - R,B,G represent the individual channels. The colour curve is plotted in - r,b space, where: + R, B, G represent the individual channels. The colour curve is plotted in + r, b space, where: r = R/G b = B/G This will be referred to as dehatspace... (sorry) @@ -71,18 +71,18 @@ def awb(Cam,cal_cr_list,cal_cb_list,plot): """ r_g_hat = r_g/(1+r_g+b_g) b_g_hat = b_g/(1+r_g+b_g) - Cam.log += '\n r_hat : {:.4f} b_hat : {:.4f}'.format(r_g_hat,b_g_hat) - rbs_hat.append((r_g_hat,b_g_hat,Img.col)) - rb_raw.append((r_g,b_g)) + Cam.log += '\n r_hat : {:.4f} b_hat : {:.4f}'.format(r_g_hat, b_g_hat) + rbs_hat.append((r_g_hat, b_g_hat, Img.col)) + rb_raw.append((r_g, b_g)) Cam.log += '\n' Cam.log += '\nFinished processing images' """ sort all lits simultaneously by r_hat """ - rbs_zip = list(zip(rbs_hat,rb_raw)) - rbs_zip.sort(key=lambda x:x[0][0]) - rbs_hat,rb_raw = list(zip(*rbs_zip)) + rbs_zip = list(zip(rbs_hat, rb_raw)) + rbs_zip.sort(key=lambda x: x[0][0]) + rbs_hat, rb_raw = list(zip(*rbs_zip)) """ unzip tuples ready for processing """ @@ -91,7 +91,7 @@ def awb(Cam,cal_cr_list,cal_cb_list,plot): """ fit quadratic fit to r_g hat and b_g_hat """ - a,b,c = np.polyfit(rbs_hat[0],rbs_hat[1],2) + a, b, c = np.polyfit(rbs_hat[0], rbs_hat[1], 2) Cam.log += '\nFit quadratic curve in hatspace' """ the algorithm now approximates the shortest distance from each point to the @@ -113,11 +113,11 @@ def awb(Cam,cal_cr_list,cal_cb_list,plot): def f(x): return a*x**2 + b*x + c """ - iterate over points (R,B are x and y coordinates of points) and calculate + iterate over points (R, B are x and y coordinates of points) and calculate distance to line in dehatspace """ dists = [] - for i, (R,B) in enumerate(zip(rbs_hat[0],rbs_hat[1])): + for i, (R, B) in enumerate(zip(rbs_hat[0], rbs_hat[1])): """ define function to minimise as square distance between datapoint and point on curve. Squaring is monotonic so minimising radius squared is @@ -129,7 +129,7 @@ def awb(Cam,cal_cr_list,cal_cb_list,plot): """ perform optimisation with scipy.optmisie.fmin """ - x_hat = fmin(f_min,R,disp=0)[0] + x_hat = fmin(f_min, R, disp=0)[0] y_hat = f(x_hat) """ dehat @@ -179,16 +179,16 @@ def awb(Cam,cal_cr_list,cal_cb_list,plot): """ r_fit = r_hat_fit/(1-r_hat_fit-b_hat_fit) b_fit = b_hat_fit/(1-r_hat_fit-b_hat_fit) - c_fit = np.round(rbs_hat[2],0) + c_fit = np.round(rbs_hat[2], 0) """ round to 4dp """ - r_fit = np.where((1000*r_fit)%1<=0.05,r_fit+0.0001,r_fit) - r_fit = np.where((1000*r_fit)%1>=0.95,r_fit-0.0001,r_fit) - b_fit = np.where((1000*b_fit)%1<=0.05,b_fit+0.0001,b_fit) - b_fit = np.where((1000*b_fit)%1>=0.95,b_fit-0.0001,b_fit) - r_fit = np.round(r_fit,4) - b_fit = np.round(b_fit,4) + r_fit = np.where((1000*r_fit)%1<=0.05, r_fit+0.0001, r_fit) + r_fit = np.where((1000*r_fit)%1>=0.95, r_fit-0.0001, r_fit) + b_fit = np.where((1000*b_fit)%1<=0.05, b_fit+0.0001, b_fit) + b_fit = np.where((1000*b_fit)%1>=0.95, b_fit-0.0001, b_fit) + r_fit = np.round(r_fit, 4) + b_fit = np.round(b_fit, 4) """ The following code ensures that colour temperature decreases with increasing r/g @@ -200,8 +200,8 @@ def awb(Cam,cal_cr_list,cal_cb_list,plot): while i > 0 : if c_fit[i] > c_fit[i-1]: Cam.log += '\nColour temperature increase found\n' - Cam.log += '{} K at r = {} to '.format(c_fit[i-1],r_fit[i-1]) - Cam.log += '{} K at r = {}'.format(c_fit[i],r_fit[i]) + Cam.log += '{} K at r = {} to '.format(c_fit[i-1], r_fit[i-1]) + Cam.log += '{} K at r = {}'.format(c_fit[i], r_fit[i]) """ if colour temperature increases then discard point furthest from the transformed fit (dehatspace) @@ -209,8 +209,8 @@ def awb(Cam,cal_cr_list,cal_cb_list,plot): error_1 = abs(dists[i-1]) error_2 = abs(dists[i]) Cam.log += '\nDistances from fit:\n' - Cam.log += '{} K : {:.5f} , '.format(c_fit[i],error_1) - Cam.log += '{} K : {:.5f}'.format(c_fit[i-1],error_2) + Cam.log += '{} K : {:.5f} , '.format(c_fit[i], error_1) + Cam.log += '{} K : {:.5f}'.format(c_fit[i-1], error_2) """ find bad index note that in python false = 0 and true = 1 @@ -221,9 +221,9 @@ def awb(Cam,cal_cr_list,cal_cb_list,plot): """ delete bad point """ - r_fit = np.delete(r_fit,bad) - b_fit = np.delete(b_fit,bad) - c_fit = np.delete(c_fit,bad).astype(np.uint16) + r_fit = np.delete(r_fit, bad) + b_fit = np.delete(b_fit, bad) + c_fit = np.delete(c_fit, bad).astype(np.uint16) """ note that if a point has been discarded then the length has decreased by one, meaning that decreasing the index by one will reassess the kept @@ -235,7 +235,7 @@ def awb(Cam,cal_cr_list,cal_cb_list,plot): """ return formatted ct curve, ordered by increasing colour temperature """ - ct_curve = list(np.array(list(zip(b_fit,r_fit,c_fit))).flatten())[::-1] + ct_curve = list(np.array(list(zip(b_fit, r_fit, c_fit))).flatten())[::-1] Cam.log += '\nFinal CT curve:' for i in range(len(ct_curve)//3): j = 3*i @@ -247,15 +247,15 @@ def awb(Cam,cal_cr_list,cal_cb_list,plot): plotting code for debug """ if plot: - x = np.linspace(np.min(rbs_hat[0]),np.max(rbs_hat[0]),100) + x = np.linspace(np.min(rbs_hat[0]), np.max(rbs_hat[0]), 100) y = a*x**2 + b*x + c - plt.subplot(2,1,1) + plt.subplot(2, 1, 1) plt.title('hatspace') - plt.plot(rbs_hat[0],rbs_hat[1],ls='--',color='blue') - plt.plot(x,y,color='green',ls='-') - plt.scatter(rbs_hat[0],rbs_hat[1],color='red') + plt.plot(rbs_hat[0], rbs_hat[1], ls='--', color='blue') + plt.plot(x, y, color='green', ls='-') + plt.scatter(rbs_hat[0], rbs_hat[1], color='red') for i, ct in enumerate(rbs_hat[2]): - plt.annotate(str(ct),(rbs_hat[0][i],rbs_hat[1][i])) + plt.annotate(str(ct), (rbs_hat[0][i], rbs_hat[1][i])) plt.xlabel('$\hat{r}$') plt.ylabel('$\hat{b}$') """ @@ -265,13 +265,13 @@ def awb(Cam,cal_cr_list,cal_cb_list,plot): # ax = plt.gca() # ax.set_aspect('equal') plt.grid() - plt.subplot(2,1,2) + plt.subplot(2, 1, 2) plt.title('dehatspace - indoors?') - plt.plot(r_fit,b_fit,color='blue') - plt.scatter(rb_raw[0],rb_raw[1],color='green') - plt.scatter(r_fit,b_fit,color='red') - for i,ct in enumerate(c_fit): - plt.annotate(str(ct),(r_fit[i],b_fit[i])) + plt.plot(r_fit, b_fit, color='blue') + plt.scatter(rb_raw[0], rb_raw[1], color='green') + plt.scatter(r_fit, b_fit, color='red') + for i, ct in enumerate(c_fit): + plt.annotate(str(ct), (r_fit[i], b_fit[i])) plt.xlabel('$r$') plt.ylabel('$b$') """ @@ -286,15 +286,15 @@ def awb(Cam,cal_cr_list,cal_cb_list,plot): """ end of plotting code """ - return(ct_curve,np.round(transverse_pos,5),np.round(transverse_neg,5)) + return(ct_curve, np.round(transverse_pos, 5), np.round(transverse_neg, 5)) """ obtain greyscale patches and perform alsc colour correction """ -def get_alsc_patches(Img,colour_cals,grey=True): +def get_alsc_patches(Img, colour_cals, grey=True): """ get patch centre coordinates, image colour and the actual - patches for each channel,remembering to subtract blacklevel + patches for each channel, remembering to subtract blacklevel If grey then only greyscale patches considered """ if grey: @@ -316,12 +316,12 @@ def get_alsc_patches(Img,colour_cals,grey=True): g_patchs = (patches[1]+patches[2])/2 - Img.blacklevel_16 if colour_cals == None: - return r_patchs,b_patchs,g_patchs + return r_patchs, b_patchs, g_patchs """ find where image colour fits in alsc colour calibration tables """ cts = list(colour_cals.keys()) - pos = bisect_left(cts,col) + pos = bisect_left(cts, col) """ if img colour is below minimum or above maximum alsc calibration colour, simply pick extreme closest to img colour @@ -343,32 +343,32 @@ def get_alsc_patches(Img,colour_cals,grey=True): bef_tabs = np.array(colour_cals[bef]) aft_tabs = np.array(colour_cals[aft]) col_tabs = (bef_tabs*db + aft_tabs*da)/(da+db) - col_tabs = np.reshape(col_tabs,(2,12,16)) + col_tabs = np.reshape(col_tabs, (2, 12, 16)) """ - calculate dx,dy used to calculate alsc table + calculate dx, dy used to calculate alsc table """ - w,h = Img.w/2,Img.h/2 - dx,dy = int(-(-(w-1)//16)),int(-(-(h-1)//12)) + w, h = Img.w/2, Img.h/2 + dx, dy = int(-(-(w-1)//16)), int(-(-(h-1)//12)) """ make list of pairs of gains for each patch by selecting the correct value in alsc colour calibration table """ patch_gains = [] for cen in cen_coords: - x,y = cen[0]//dx, cen[1]//dy + x, y = cen[0]//dx, cen[1]//dy # We could probably do with some better spatial interpolation here? - col_gains = (col_tabs[0][y][x],col_tabs[1][y][x]) + col_gains = (col_tabs[0][y][x], col_tabs[1][y][x]) patch_gains.append(col_gains) """ multiply the r and b channels in each patch by the respective gain, finally performing the alsc colour correction """ - for i,gains in enumerate(patch_gains): + for i, gains in enumerate(patch_gains): r_patchs[i] = r_patchs[i] * gains[0] b_patchs[i] = b_patchs[i] * gains[1] """ - return greyscale patches, g channel and correct r,b channels + return greyscale patches, g channel and correct r, b channels """ - return r_patchs,b_patchs,g_patchs + return r_patchs, b_patchs, g_patchs |