summaryrefslogtreecommitdiff
path: root/src/ipa/rkisp1/algorithms/agc.cpp
diff options
context:
space:
mode:
authorJean-Michel Hautbois <jeanmichel.hautbois@ideasonboard.com>2021-11-19 07:56:12 +0100
committerJean-Michel Hautbois <jeanmichel.hautbois@ideasonboard.com>2021-11-29 20:41:38 +0100
commitfea85f84c2ac940f1e149d1382216ab3da0b7703 (patch)
treea1df8afaaa766cb7dff4c0b5da8c24dd57cea667 /src/ipa/rkisp1/algorithms/agc.cpp
parentaf7f70b69ac9c8127e14557a8f2d9618a054da59 (diff)
ipa: rkisp1: Introduce AGC
Now that we have IPAContext and Algorithm, we can implement a simple AGC based on the IPU3 one. It is very similar, except that there is no histogram used for an inter quantile mean. The RkISP1 is returning a 5x5 array (for V10) of luminance means. Estimating the relative luminance is thus a simple mean of all the blocks already calculated by the ISP. Signed-off-by: Jean-Michel Hautbois <jeanmichel.hautbois@ideasonboard.com> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
Diffstat (limited to 'src/ipa/rkisp1/algorithms/agc.cpp')
-rw-r--r--src/ipa/rkisp1/algorithms/agc.cpp285
1 files changed, 285 insertions, 0 deletions
diff --git a/src/ipa/rkisp1/algorithms/agc.cpp b/src/ipa/rkisp1/algorithms/agc.cpp
new file mode 100644
index 00000000..2c222a4e
--- /dev/null
+++ b/src/ipa/rkisp1/algorithms/agc.cpp
@@ -0,0 +1,285 @@
+/* SPDX-License-Identifier: LGPL-2.1-or-later */
+/*
+ * Copyright (C) 2021, Ideas On Board
+ *
+ * agc.cpp - AGC/AEC mean-based control algorithm
+ */
+
+#include "agc.h"
+
+#include <algorithm>
+#include <chrono>
+#include <cmath>
+
+#include <libcamera/base/log.h>
+
+#include <libcamera/ipa/core_ipa_interface.h>
+
+/**
+ * \file agc.h
+ */
+
+namespace libcamera {
+
+using namespace std::literals::chrono_literals;
+
+namespace ipa::rkisp1::algorithms {
+
+/**
+ * \class Agc
+ * \brief A mean-based auto-exposure algorithm
+ */
+
+LOG_DEFINE_CATEGORY(RkISP1Agc)
+
+/* Limits for analogue gain values */
+static constexpr double kMinAnalogueGain = 1.0;
+static constexpr double kMaxAnalogueGain = 8.0;
+
+/* \todo Honour the FrameDurationLimits control instead of hardcoding a limit */
+static constexpr utils::Duration kMaxShutterSpeed = 60ms;
+
+/* Number of frames to wait before calculating stats on minimum exposure */
+static constexpr uint32_t kNumStartupFrames = 10;
+
+/*
+ * Relative luminance target.
+ *
+ * It's a number that's chosen so that, when the camera points at a grey
+ * target, the resulting image brightness is considered right.
+ *
+ * \todo Why is the value different between IPU3 and RkISP1 ?
+ */
+static constexpr double kRelativeLuminanceTarget = 0.4;
+
+Agc::Agc()
+ : frameCount_(0), filteredExposure_(0s)
+{
+}
+
+/**
+ * \brief Configure the AGC given a configInfo
+ * \param[in] context The shared IPA context
+ * \param[in] configInfo The IPA configuration data
+ *
+ * \return 0
+ */
+int Agc::configure(IPAContext &context,
+ [[maybe_unused]] const IPACameraSensorInfo &configInfo)
+{
+ /* Configure the default exposure and gain. */
+ context.frameContext.agc.gain = std::max(context.configuration.agc.minAnalogueGain, kMinAnalogueGain);
+ context.frameContext.agc.exposure = 10ms / context.configuration.sensor.lineDuration;
+
+ /*
+ * According to the RkISP1 documentation:
+ * - versions < V12 have RKISP1_CIF_ISP_AE_MEAN_MAX_V10 entries,
+ * - versions >= V12 have RKISP1_CIF_ISP_AE_MEAN_MAX_V12 entries.
+ */
+ if (context.configuration.hw.revision < RKISP1_V12)
+ numCells_ = RKISP1_CIF_ISP_AE_MEAN_MAX_V10;
+ else
+ numCells_ = RKISP1_CIF_ISP_AE_MEAN_MAX_V12;
+
+ /* \todo Use actual frame index by populating it in the frameContext. */
+ frameCount_ = 0;
+ return 0;
+}
+
+/**
+ * \brief Apply a filter on the exposure value to limit the speed of changes
+ * \param[in] exposureValue The target exposure from the AGC algorithm
+ *
+ * The speed of the filter is adaptive, and will produce the target quicker
+ * during startup, or when the target exposure is within 20% of the most recent
+ * filter output.
+ *
+ * \return The filtered exposure
+ */
+utils::Duration Agc::filterExposure(utils::Duration exposureValue)
+{
+ double speed = 0.2;
+
+ /* Adapt instantly if we are in startup phase. */
+ if (frameCount_ < kNumStartupFrames)
+ speed = 1.0;
+
+ /*
+ * If we are close to the desired result, go faster to avoid making
+ * multiple micro-adjustments.
+ * \todo Make this customisable?
+ */
+ if (filteredExposure_ < 1.2 * exposureValue &&
+ filteredExposure_ > 0.8 * exposureValue)
+ speed = sqrt(speed);
+
+ filteredExposure_ = speed * exposureValue +
+ filteredExposure_ * (1.0 - speed);
+
+ LOG(RkISP1Agc, Debug) << "After filtering, exposure " << filteredExposure_;
+
+ return filteredExposure_;
+}
+
+/**
+ * \brief Estimate the new exposure and gain values
+ * \param[inout] frameContext The shared IPA frame Context
+ * \param[in] yGain The gain calculated on the current brightness level
+ */
+void Agc::computeExposure(IPAContext &context, double yGain)
+{
+ IPASessionConfiguration &configuration = context.configuration;
+ IPAFrameContext &frameContext = context.frameContext;
+
+ /* Get the effective exposure and gain applied on the sensor. */
+ uint32_t exposure = frameContext.sensor.exposure;
+ double analogueGain = frameContext.sensor.gain;
+
+ utils::Duration minShutterSpeed = configuration.agc.minShutterSpeed;
+ utils::Duration maxShutterSpeed = std::min(configuration.agc.maxShutterSpeed,
+ kMaxShutterSpeed);
+
+ double minAnalogueGain = std::max(configuration.agc.minAnalogueGain,
+ kMinAnalogueGain);
+ double maxAnalogueGain = std::min(configuration.agc.maxAnalogueGain,
+ kMaxAnalogueGain);
+
+ /* Consider within 1% of the target as correctly exposed. */
+ if (std::abs(yGain - 1.0) < 0.01)
+ return;
+
+ /* extracted from Rpi::Agc::computeTargetExposure. */
+
+ /* Calculate the shutter time in seconds. */
+ utils::Duration currentShutter = exposure * configuration.sensor.lineDuration;
+
+ /*
+ * Update the exposure value for the next computation using the values
+ * of exposure and gain really used by the sensor.
+ */
+ utils::Duration effectiveExposureValue = currentShutter * analogueGain;
+
+ LOG(RkISP1Agc, Debug) << "Actual total exposure " << currentShutter * analogueGain
+ << " Shutter speed " << currentShutter
+ << " Gain " << analogueGain
+ << " Needed ev gain " << yGain;
+
+ /*
+ * Calculate the current exposure value for the scene as the latest
+ * exposure value applied multiplied by the new estimated gain.
+ */
+ utils::Duration exposureValue = effectiveExposureValue * yGain;
+
+ /* Clamp the exposure value to the min and max authorized. */
+ utils::Duration maxTotalExposure = maxShutterSpeed * maxAnalogueGain;
+ exposureValue = std::min(exposureValue, maxTotalExposure);
+ LOG(RkISP1Agc, Debug) << "Target total exposure " << exposureValue
+ << ", maximum is " << maxTotalExposure;
+
+ /*
+ * Divide the exposure value as new exposure and gain values.
+ * \todo estimate if we need to desaturate
+ */
+ exposureValue = filterExposure(exposureValue);
+
+ /*
+ * Push the shutter time up to the maximum first, and only then
+ * increase the gain.
+ */
+ utils::Duration shutterTime = std::clamp<utils::Duration>(exposureValue / minAnalogueGain,
+ minShutterSpeed, maxShutterSpeed);
+ double stepGain = std::clamp(exposureValue / shutterTime,
+ minAnalogueGain, maxAnalogueGain);
+ LOG(RkISP1Agc, Debug) << "Divided up shutter and gain are "
+ << shutterTime << " and "
+ << stepGain;
+
+ /* Update the estimated exposure and gain. */
+ frameContext.agc.exposure = shutterTime / configuration.sensor.lineDuration;
+ frameContext.agc.gain = stepGain;
+}
+
+/**
+ * \brief Estimate the relative luminance of the frame with a given gain
+ * \param[in] ae The RkISP1 statistics and ISP results
+ * \param[in] gain The gain to apply to the frame
+ *
+ * This function estimates the average relative luminance of the frame that
+ * would be output by the sensor if an additional \a gain was applied.
+ *
+ * The estimation is based on the AE statistics for the current frame. Y
+ * averages for all cells are first multiplied by the gain, and then saturated
+ * to approximate the sensor behaviour at high brightness values. The
+ * approximation is quite rough, as it doesn't take into account non-linearities
+ * when approaching saturation. In this case, saturating after the conversion to
+ * YUV doesn't take into account the fact that the R, G and B components
+ * contribute differently to the relative luminance.
+ *
+ * \todo Have a dedicated YUV algorithm ?
+ *
+ * The values are normalized to the [0.0, 1.0] range, where 1.0 corresponds to a
+ * theoretical perfect reflector of 100% reference white.
+ *
+ * More detailed information can be found in:
+ * https://en.wikipedia.org/wiki/Relative_luminance
+ *
+ * \return The relative luminance
+ */
+double Agc::estimateLuminance(const rkisp1_cif_isp_ae_stat *ae,
+ double gain)
+{
+ double ySum = 0.0;
+
+ /* Sum the averages, saturated to 255. */
+ for (unsigned int aeCell = 0; aeCell < numCells_; aeCell++)
+ ySum += std::min(ae->exp_mean[aeCell] * gain, 255.0);
+
+ /* \todo Weight with the AWB gains */
+
+ return ySum / numCells_ / 255;
+}
+
+/**
+ * \brief Process RkISP1 statistics, and run AGC operations
+ * \param[in] context The shared IPA context
+ * \param[in] stats The RKISP1 statistics and ISP results
+ *
+ * Identify the current image brightness, and use that to estimate the optimal
+ * new exposure and gain for the scene.
+ */
+void Agc::process(IPAContext &context, const rkisp1_stat_buffer *stats)
+{
+ const rkisp1_cif_isp_stat *params = &stats->params;
+ ASSERT(stats->meas_type & RKISP1_CIF_ISP_STAT_AUTOEXP);
+
+ const rkisp1_cif_isp_ae_stat *ae = &params->ae;
+
+ /*
+ * Estimate the gain needed to achieve a relative luminance target. To
+ * account for non-linearity caused by saturation, the value needs to be
+ * estimated in an iterative process, as multiplying by a gain will not
+ * increase the relative luminance by the same factor if some image
+ * regions are saturated.
+ */
+ double yGain = 1.0;
+ double yTarget = kRelativeLuminanceTarget;
+
+ for (unsigned int i = 0; i < 8; i++) {
+ double yValue = estimateLuminance(ae, yGain);
+ double extra_gain = std::min(10.0, yTarget / (yValue + .001));
+
+ yGain *= extra_gain;
+ LOG(RkISP1Agc, Debug) << "Y value: " << yValue
+ << ", Y target: " << yTarget
+ << ", gives gain " << yGain;
+ if (extra_gain < 1.01)
+ break;
+ }
+
+ computeExposure(context, yGain);
+ frameCount_++;
+}
+
+} /* namespace ipa::rkisp1::algorithms */
+
+} /* namespace libcamera */